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Introduction

What are thermohydraulic transients in CICC’s ?

@ Stability (fast)

J \\ Quench

& Normal operation (slow)
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Summary

Quench studies as far back as the 70’s ...

Model

Discuss maths and physics

Draw consequences for numerics
Adaptivity

Conclusions



Model

CICC

Simplified CICC
S

D.o.F. model



Model

& helium flow
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Physical Characteristics

® Define time scales and characteristic lengths

® Give orders of magnitude

@ Sound speed modes (pressure waves, inertia effects)
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Physical Characteristics

¥ Pressure profile (pressure diffusion, friction)
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Physical Characteristics

&, Thermal Coupling (heat transfer at wetted surfaces)
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Physical Characteristics

4 Quench Propagation (front movement, free boundary)

Temperature Evolution
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Physical Characteristics

heating of normal zone —

/

heated helium expulsion

conduction

front propagation
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Physical Characteristics

% Quench Front Width (boundary layer)
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Physical Characteristics - Summary

= Large disparity of time scales
< Large disparity of characteristic lengths

t ranging from 0.5 ms to 100 s= 10°
) ranging from 1 cm to 1 km = 10°

5 orders of magnitudes are spanned in the time/length scales



Mathematical Characteristics

= Inspect nature of the equations

= study problems through mathematically equivalent (but
simpler) models

© Hyperbolic system

2
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g source vector



Mathematical Characteristics

A model problem
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incomprehensible defective-confusion equation (Leonard, 1979)

a=0 = parabolic equation
a=0 = hyperbolic (1st order) equation

change of functional class (from H' to H") depending on o !



Mathematical Characteristics

P vL
. e=—
Peclet number: o
Pure Diffusion (Pe=0) Convection-Diffusion (Pe=20) Pure Convection (Pe=infinity)

AN

0\

N

A\

Pe=0 Pe=20 Pe=w
H1 H1 HO



Mathematical Characteristics - Spaces

H’ space of those functions that are square-integrable

H' space of those functions that are square-integrable and
whose first derivative is also square-integrable

H° IS a box of apples and pears
H'  is a box of apples only

H° is wider than H'




Mathematical Characteristics

Which equations show hyperbolicity ?

& helium flow

a_p_'_ a(pv) _0 ]
o dominated by friction
W), K)o .
ot . D,
J J J .
o (pe) , d(pev)  dI(pv) _ E Di1re W -T,)
ot ox ox = A,
¥ conduction weak coupling

of 9 (. T\ 4 P,
C——-— k.—’)=—’+ —2h \T.-T
pz i ot O’bC( i o Al- J;i Ai ],l( J l)



Mathematical Characteristics

¥ Moving Boundary

Implicit moving boundary equation T=Tg
A model problem for pure convection
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Mathematical Characteristics

Analytic solution:
XO
moving boundary with speed V. = }y

. . . 0T
increasing temperature with constant rate =7

F V4 IS a constant

= dependence on Xy and vy (integral of source)

= the system is meta-stable (thermal runaway)



Mathematical Characteristics
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Mathematical Characteristics

Effect of diffusion (perturbation to model problem):
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Mathematical Characteristics

Greater speed [

Y
New (fresh) helium engulfed l

Longer normal zone

y

»| Larger source integral

% Quench propagation at increasing speed




Mathematical Characteristics - Summary

# strong hyperbolic character for energy balance
% sharp temperature fronts associated to both:

> hyperbolic character

¥ free boundary
® meta-stable system sensitive to perturbations

& pressure fronts are not expected (no shocks)

= problem is stiff (large time scale disparity)



Numerics

Facts which have the strongest consequences:

< Hyperbolicity (significant 1st order space derivative term)
¥ Non-linearity, meta-stability and moving boundary

& Stiffness

Concentrate on FD’s and FE’s (most flexible methods)

Remarks on other methods (few)



Numerics

 Hyperbolicity
First trial (choice for parabolic ode’s) central differences

Second Order (Centered) Finite Differences
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Numerics

A step back (physics of flow ?) upwind differences

First Order (Upwind) Finite Differences
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Numerics

Central differences in x & t = 2nd order of accuracy
’u
= o(Ax?, A
= ol AT) TS

dispersion

Upwind differences in x & t= 1st order of accuracy
J’u
Jx°
diffusion

¢ = o(Ax,At)

Phenomenological...Can we find a better explanation ?



Numerics

¢ FE (Galerkin) = to FD central differences in x & t
¥ FE (Galerkin) looks for a solution in H' (in the apple box)
% the solution is in H’ (apple+pears box, not an apple, a pear)

Find the apple that, in a weak sense, gives the best
approximation to the pear

A bigger box (more nodes)? = A better approximation

An apple will never be a pear




Numerics

= FE (Petrov-Galerkin) = to FD upwind differences in x & t

% FE (Petrov-Galerkin) is optimal (1-D, steady state)

% No optimal treatment for general transient case




Numerics

¥ Moving boundary (perturbed model problem)
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Numerics
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Numerics
desired o. = 10°-10°
assume Ax = VAt (stepat C=1)andv=1m/s

3
AX =~ At =10°-10°

Length: 100 m Time span: 10s
4 4
Mesh: 100 Mnoges Time steps: 10 Mgieps

CPUtime(1 CPUus/Node Step) - 109 CPUs = |32 CPUy

©



Numerics - Adaptivity
What is adaptivity ?

& Define an error estimator (definition of ¢)
¥ Build a mesh designer (Ax, At based on &)
&y Re-mesh until € < gay

What are the problems with respect to quench simulation ?

© No a priori definition of ¢
¥ Re-meshing (may) imply iterations (non-linearity in transient)

An alternative: front tracking




Numerics - Adaptivity

Front tracking to determine desired mesh density
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Numerics - Adaptivity

Temperature Evolution
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Numerics - Adaptivity

Mesh Density
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Numerics

& Stiffness

An example:

& 2 times scales

(J Y,
ot
J
\ﬁt

Ay = 1=1/2h

+h()’1 _J/2)=S

+h(y2 _J’1)=S

<y>

= T=S/<y>



Numerics

Explicit integration (Euler forward)
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Numerics

What are the fast modes (compared to ) ?

& pressure waves
(damped by friction)

% temperature differences in the cable cross section
(THe = TCo)

Implicit treatment required

% non-conservative form of flow equations (p,v,T)



Numerics

d& Other methods, packages, miscellanea

% Eulerian vs Lagrangian method (moving FE’'s)

< Packages
solvers for systems of PDE’s = scarce

solvers for systems of ODE’s = many for 2nd order
? generality ?

& Qther methods ?



Numerics - Summary

% QOrder of method (critical)
first order for stability (and damping)
second order for improved accuracy (a must !)

< Adaptivity
Improves accuracy at given computational work
p-h adaptivity optimal

< |mplicit solution
suppression of fast (useless) modes
retained for generality (waves, temperature gradients)



Conclusions

= physical implications (compressible flow in pipes)
% mathematical implications (moving-boundary)

% numerical implications (methods’ development)



