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Accelerator principles 
 
Particle accelerators are one of the main tools of nuclear physics. Accelerator research 
is usually carried out smashing high energy particles against targets (fixed targets 
experiments), or against each other (collider experiments). The products of the 
interactions depend on the nature and energy of the particles flying in the accelerator. 
In general higher particle energy is associated with higher resolution, much as a 
microscope resolution increases with the reduction of the wavelength of the light used 
to illuminate the object.  
 
The present state of the art for the energy of a single particle in an accelerator is 1 
TeV (1.6 10-7 J) provided by the Tevatron complex at FNAL. CERN is presently 
building the Large Hadron Collider (LHC), that will provide towards the end of the 
first decade of 2000 counter-rotating protons with energy nearly one order of 
magnitude higher, 7 TeV, and 14 TeV in the center of mass of two colliding protons. 
At this energy level the particles are highly relativistic. Figure 1 shows the so called 
Livingston chart with the evolution of the accelerator energy in time and as a function 
of the evolving accelerator technology. 
 
Modern accelerators are of two main types: linear accelerators (also referred to as 
linacs) and circular accelerators . Linear accelerators (see Fig. 2) consist of a sequence 
of accelerating cavities where a suitable electric field accelerates the particles and 
focussing elements that eventually produce a small, high energetic beam emerging at 
the end of the accelerator. In linacs the maximum particle energy is determined by the 
product of number and strength of accelerating stations. For a given accelerating 
strength this product corresponds to length of the accelerator that is generally limited 
by practical considerations and cost. 
 
Circular accelerators (see Fig. 3) consist of accelerating cavities and guiding magnets 
with uniform field that bend the beam on a closed orbit, eventually bringing it back to 
the accelerating station. The advantage of this type of accelerators is that the beam can 
be accelerated in small quanta at each passage and in the absence of losses the 
maximum energy that can be reached does not depend on the number and strength of 
accelerating stations. 
 



Luca Bottura Applied Superconductivity II SS 2002 Lesson#5, p2 

 
 

Figure 1. Livingston chart for modern accelerators. The time scale is the year of completion of the 
accelerator, the vertical scale is the equivalent energy of particles in a beam colliding with a proton at 

rest that has the same center of mass energy. 
 
 

 
 

Figure 2. Principle of a linear accelerator. 
 
In circular accelerators the maximum beam energy is limited by two processes. On 
one side the beam bending radius ρ in the guiding magnets depends on the beam 
energy E and on the magnetic field B: 
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where the energy E is in units of [GeV], the particle charge q is in units of electron 
charge and the magnetic field B is in units of [T]. As an example a 1 TeV (E=1000 
GeV) proton (q=1) is bent by a 5 T field on a radius ρ = 667 m. In practice the 
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magnetic field that can be produced is limited whatever the technology used 
(permanent magnets, classical or superconducting electromagnets), hence the 
accelerator size grows linearly with the maximum beam energy. 
 

 
 

Figure 3. Principle of a circular accelerator (shown here for the case of the Large Electron Positron 
collider, LEP). 

 
On the other side a particle on a bent trajectory emits synchrotron radiation and thus 
looses energy. The energy lost δE per turn in the accelerator is given by: 
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where m is the rest mass of the particle in units of the electron mass at rest, and the 
energy E is again in units of [GeV]. As an example a proton (m = 1840) with an 
energy of 1 TeV (E=1000 GeV) and bent on the curvature radius found above, ρ = 
667 m, would loose an energy of δE = 0.012 keV per turn.  
 
The energy lost per turn decreases with the fourth power of the rest mass of the 
particle. For comparison, an electron (m = 1) with the same energy and on the same 
curvature radius would loose ideally an astronomic amount of energy δE = 1.3 1011 
keV per turn, corresponding to 130 TeV, a factor 1013 larger than in the case of a 
proton. This is the reason why modern circular accelerators use heavy particles (to 
minimise energy loss), while synchrotron radiation sources use electrons (to maximise 
radiation). We also see that the energy lost per turn increases with the fourth power of 
the energy. At a given point the energy replenishment at the accelerating cavity is 
equal to the energy lost in one turn along the accelerator and the limit is reached. 
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Exercise – plot the cost function obtained as a linear combination of civil engineering costs 
(proportional to the length), magnetic system cost (proportional to the length and the magnetic 
field) and power installed for acceleration and operation (proportional to the energy loss per 
turn): 
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and study the behaviour as a function of the accelerator radius and field, at constant E. Show 
that an optimum can be found both with respect to the radius and to the field. 
 
The cost function at constant energy can be written in terms of the radius only as follows: 
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and in terms of the field only as follows: 
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Below is a plot of the cost function and its contributions for the following choice of 
parameters: 
 
C1 = 3 10 -3, C2 = 5 10-5, C3 = 8 103, n = 2, q = 1, m = 1800, E = 1000 GeV. 
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Circular accelerators are filled from an injector, that can also be a circular accelerator 
of smaller size. The beam is subsequently accelerated until it reaches the maximum 
energy and ejected into a following acceleration stage , into a target (fixed target 
operation) or stored until it is brought in collision with a counter-circulating beam at 
the experimental detectors (collider operation). In the operation of such a chain it is 
extremely important that the bending strength of the magnets tracks precisely the 
energy change of the beam  during acceleration. This requirement of synchronicity is 
the reason why circular accelerators are often named synchrotrons. 
 
In addition to bending the beam, the magnetic field is used in synchrotrons to focus 
the particle and thus maintain the beam size small. In the presence of a pure bending 
beam, perfectly homogeneous in space as shown in Fig. 4(a), particles in the beam 
with slight deviations from nominal conditions (small momentum or orbit errors) 
would spiral and drift away from the nominal orbit, eventually leaving the accelerator. 
This is avoided using gradient fields, such as shown in Fig. 4(b). A gradient field 
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bends strongly particles that are far away from the nominal orbit, so that the beam is 
focussed in the direction of the gradient. However, because of the fact that the field 
gradients in the three space directions are not independent, a focussing gradient in one 
direction, e.g. x direction as in Fig. 4(b), corresponds necessarily to a defocussing 
gradient in the normal direction, in this case y. The defocussing effect is compensated 
at the next gradient magnet, powered with opposite polarity, thus producing a 
focussing effect in y direction and a defocussing effect in x direction. Provided that 
the gradient magnets are sufficiently close to each other, the net effect on the particles 
is focussing.  
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Figure 4. Effect of a uniform (dipole) and a gradient (quadrupole) field on a positive charged particle 
initially moving in the z direction (entering the page). 

 
This is the basic layout of a modern accelerator magnets, consisting of a regular 
repetition of cells of focussing magnets (indicated with the letter F), bending magnets 
(indicated with the letter O), defocussing magnets (indicated with the letter D) and 
bending magnets (O), or FODO. In addition to the magnets mentioned above, higher 
order gradient magnets are necessary to correct for the non-linear beam response to 
perturbations and to stabilize the beam. This is shown schematically in Fig. 5 that 
reports the structure of the basic cell of the LHC collider and includes all main 
correcting systems. 
 

 
MB_ lattice dipole    MQ lattice quadrupole 
MSCB lattice sextupole+orbit corrector  MO lattice octupole 
MQT trim quadrupole    MQS skew trim quadrupole 
MCDO spool-piece decapole-octupole   MCS spool-piece sextupole 

 
Figure 5. FODO cell of the LHC, including the main correcting systems. 

 
Because of their importance, this lecture focusses on superconducting accelerator 
magnets. Among the many aspects that are relevant for the design and construction, it 
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concentrates on the magnetic field and the influence of superconducting effects on the 
high field quality requested in accelerators. 
 
Complex magnetic field notation for accelerator magnets 
 
Magnets for accelerators are long and slender, and the field in the small bore can be 
considered with good approximation as purely 2-D. We can therefore concentrate on 
the cross section (x,y) and ignore the length z. With this assumption it is possible to 
use the complex notation first introduced by Beth [Beth-66, Beth-67] to simplify the 
mathematics. A function B is defined in the current-free space from the two 
components of the field as follows: 
 

xy iBB +=B  
 
where i is the imaginary unit, s = x + iy is the complex variable and s* = x - iy is its 
complex conjugate. The complex function B is analytic in the current-free space, as it 
satisfies the Cauchy-Riemann conditions: 
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Exercise - proove that the function B is analytic using the quasi-static Maxwell equations for 
linear materials JB

0
µ=!"  and 0=!B . 

 
We take the derivatives as needed and obtain: 
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the first condition is true because the following equation holds in free space: 
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and the second condition is true because: 
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Since then B is analytic, we can expand it in Taylor series around any point. Taking in 
particular the bore of the magnet and considering the disk that extends up to the first 
conductor, i.e. the current-free region, we can write that B is given by the following 
series: 
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where the complex coefficients Cn are the so called harmonics or multipoles of the 
field and Rref is a reference radius chosen conveniently to scale the coefficients. The 
complex multipoles are written in terms of their real and imaginary parts: 
 

nnn
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where the Bn are called the normal multipoles, while the An are the skew multipoles. 
The coefficients Cn, Bn and An are in units of T at the reference radius. A magnet is 
said to generate a pure normal or skew multipole of order m if the expansion of the 
field in the magnet bore contains only one coefficient Bm or Am respectively. In 
particular a magnet with a field expansion containing only the term B1 is said to 
generate a pure normal dipole field. The field in this case is given by: 
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it is constant and oriented along y and corresponds to the bending field examined 
above. If the only non-zero term is A1 then the magnet is said to generate a pure skew 
dipole field, given by: 
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constant in space and oriented along y. A pure normal quadrupole field is obtained 
when the only non-zero coefficient is B2: 
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that corresponds to the gradient field examined above. If only A2 is non-zero the field 
is then: 
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also called a skew quadrupole. The higher order terms are called by analogy normal 
and skew sextupole (B3 and A3 respectively), normal and skew octupole (B4 and A4), 
and so on. 
 
It is normal practice in the measurement and analysis of the field to refer to 
normalised multipole coefficients, which we will indicate with lowercase letters: 
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The normalised coefficients are obtained for a normal magnet of order m (recall that 
the dipole has m = 1) using: 
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where the factor 104 is inserted for convenience, as higher order multipoles are 
generally small, typically of the order of 10-4 of the main field component. Although 
the normalised harmonic coefficient are dimensionless, they are usually quoted in so 
called units, a unit being the result of the normalization and scaling of the expression 
above. 
 

Exercise – plot the field vectors for dipole, quadrupole and sextupole. 
  
The normal and skew dipole B1 and A1 are a uniform field oriented along the y and x axes 
respectively 
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The normal quadrupole B2 is a constant gradient field, oriented in y direction along the x axis 
and in x direction along they axis. The skew  quadrupole A2 is obtained from the normal 
quadrupole by a positive (counterclockwise) rotation of 45 degrees. 
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Magnetic field of elementary current and moments 
 
Magnetic field can be generated either flowing electric current in a conductor, or 
magnetizing suitable material. Both techniques are used for accelerator magnets. It is 
hence necessary to know the field generated by an elementary current and magnetic 
moment. The field generated at a location s by a line of current I flowing in z 
direction and located at a position R = Rx + i Ry in complex plane is given by: 
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Figure 6. Field produced by a current line I placed at a position R in complex plane. 

 
It is possible to compute the multipoles generated by this current line as follows: 
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where we see that a single current line generates multipoles of all orders.  
 

Exercise – proove that the multipoles of a current line are given by the above expression. 
 
We take the expression for the field of a current line and we write it as follows: 
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the last term in the above equation can be expanded in series as follows: 
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and we can finally write the magnetic field using the above result: 
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where the product of the first two terms in the sum can be identified to be equal to Cn.  

 
As we will see later, it is in addition often necessary to compute the field generated at 
a location s by a magnetic moment of strength m = my + i mx in the complex plane 
and located at a position R = Rx + i Ry. The magnetic field is given by: 
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while the associated multipoles are given by: 
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Figure 7. Field produced by a magnetic moment m placed at a position R in complex plane. 
 
Most superconducting accelerator magnets are enclosed in an iron yoke which 
increases the field and shields the exterior from the intense magnetic field. In the case 
of an ideal, round iron yoke with radius Riron, centered with the origin of the 
coordinate system and large permeability µ the effect of the iron can be computed 
using the method of images. For a current line of module I and located at R the image 
current has a module I’ and is placed at a radius R’ obtained from: 
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For a magnetic moment m located at R it is also possible to compute the image in the 
iron shell. The position of the image is the same R’ already computed, and the 
strength and direction of the image magnetic moment is obtained from: 
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Associated field and multipoles are computed adding the contribution of this image 
current to the physical one. 
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Figure 8. Image of current (left) and of magnetic moment (right) in a circular iron yoke. 

 
Magnetic design 
 
Magnets of a desired order can be built by a proper arrangement of the current in 
space, so as to produce a given multipole while cancelling other selected multipoles. 
The simplest current distribution that generates a pure multipole is the so called cos(θ) 
arrangement. In this arrangement the current is distributed on a circle of radius R with 
a cosinus current density given by: 
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Figure 9. Schematic cos(pθ) current distribution, with p = 1. 
 
The field generated inside the circle can be computed as the integral of all elementary 
contributions and is given by: 
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where we recognize that a cos(pθ) current distribution generates a pure normal 
multipole of order p and strength: 
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Similarly a sin(pθ) arrangement of the type: 
 



Luca Bottura Applied Superconductivity II SS 2002 Lesson#5, p12 

( )!pJJ sin
0

=  
 
produces a pure skew multipole of order p and strength: 
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Exercise – show that the cos(pθ) and a sin(pθ) current distribution on a circle of radius R 
produce pure normal and skew multipoles. 
 
We consider the cos(pθ) distribution and we take the elementary contribution of a current 
element of extension dθ on the circle of radius R, given by: 
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and we compute the multipole contribution generated by this current element located at the 
complex position R = R eiθ: 
 

( ) !!
"

µ

"

µ
!

RdpJ
eR

R

R
dI

R

R
d

n

i

ref

ref

n

ref

ref

n cos
22

0

00

##
$

%
&&
'

(
)=##

$

%
&&
'

(
)=

R
C  

 
simplifying and integrating over the circle we obtain: 
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The integral of the trigonometric functions has the following known results 
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and we therefore obtain that 
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We now consider the sin(pθ) distribution and we proceed in the same way. The elementary 
current is: 
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that, once integrated, produces the following multipoles: 
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The integral above can be solved using the additional known result: 
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leading to: 
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The current density distribution above is clearly not practical to wind magnets., that 
require the use of cables of finite size. A useful result is however achieved 
considering two cylinders of radius R with uniform current density J in z direction and 
placed along the x axis with the centers at a distance d so that they intersect. The 
cylinders have current in opposite direction, and the intersecting region is current free. 
In this case the magnetic field generated in the current-free region is uniform and it is 
given by: 
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The field generated by this configuration is therefore a perfect normal dipole. A skew 
dipole can be obtained intersecting two cylinders placed along the y axis. 
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Figure 10. Schematic of the current distribution obtained intersecting two cylinders. 
 

Exercise – proove that two intersecting cylinders generate a pure dipole field in the current-free 
region. 
 
To proove this we compute the field at a point P placed inside both cylinders. The rightmost 
cylinder has a uniform positive current density J, while the leftmost cylinder has a uniform, 
negative current density -J. To simplify the calculation we use the vector representation of the 
field. The point P is located at distance d1 with respect to the center of the leftmost circle, and 
distance d2 with respect to the center of the rightmost circle. The point is at an height h with 
respect to the axis passing through the two centers. 
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For the field calculation we make use of the fact that the contour integral of the magnetic field 
along the boundary Γ of a simply connected surface S is equal to the flux of the current density 
through the surface S: 
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Taking as the surface S the circle coaxial with the center of the rightmost circle, and radius r1, 
the field from the first circle has constant strength and direction tangent to the circumference at 
all points. At the point P we have therefore that the two components of the magnetic field are: 
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For the second circle we use the same method and we can write that at the same point the 
magnetic field is 
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The total field at P is therefore: 
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The only non-zero field component is directed along y, and the field does not depend on the 
position, i.e. it is a perfect normal dipole. 
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It is worth noticing that other remarkable cases can be obtained intersecting ellipses, 
and in particular a perfect quadrupole can be obtained intersecting two ellipses with 
major axes normal to each other. Similar, more relevant results, are obtained using 
sectors with constant current density as shown below. Although sector current 
distribution cannot produce a pure multipole, and contains necessarily other 
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multipoles as error terms, the error content can be minimised by a proper choice of the 
extension of the sector or using multiple sectors compensating each other. 
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Figure 11. Sector current distribution that generates a dipole field (left) and a quadrupole field (right). 

 
All magnetic configurations examined so far have strong symmetry. In general a 
perfectly symmetric multipole magnet of order m is such that the geometry of the 
winding and iron is rotationally symmetric by the angle π/m. After such a rotation we 
obtain an identical magnet if in addition we invert the current direction. This 
symmetry leads directly to restrictions on the orders that are allowed in the multipole 
expansion. In particular the allowed multipoles for a magnet of order m are only those 
that have order n: 
 

( )n m k= +2 1  
 
where k is an integer. For the dipole the series of allowed multipoles is therefore  
 
n = {1,3,5,7,…} 
 
while for a quadrupole the series of allowed multipoles is: 
 
n = {2,6,10,14,…} 
 
In addition accelerator magnets are usually produced and positioned so that they 
generate a pure normal or skew multipole of order m. A normal multipole magnet has 
top-bottom symmetry in the geometry and current. As a consequence the magnetic 
field on the midplane has strictly y direction. This implies immediatly that the 
imaginary (skew) part of any allowed multipole coefficient must be zero. Similarly a 
skew magnet has top-bottom symmetric geometry and antisymmetric current. In this 
case the field on the midplane has x direction, so that all allowed coefficients have 
zero real (normal) part. The result is that in a perfectly symmetric normal multipole 
magnet only the normal allowed multipoles are present, and similarly for a perfectly 
symmetric skew multipole magnet, where only skew allowed multipoles are present. 
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Exercise – proove that the allowed harmonics in a perfectly symmetric magnet of oredr m are 
( )n m k= +2 1 . 

 
We can express the symmetry condition on a general harmonic coefficient Cn by writing that: 
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where the primed coefficient indicates the value of the harmonic after rotation and we have 
used a known property of the rotation of reference frame on the harmonic coefficients. The 
condition can be satisfied only when: 
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Equating the real and imaginary part in the above relation we can write that: 
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that is satisfied when the argument of the trigonometric functions is equal to π or its multiples 
of 2π. We can therefore write the condition as 
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m
n
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where k is an arbitrary non-negative integer number. This relation is verified for all n such that: 
 

( )n m k= +2 1  
 

 
Magnet construction 
 
For reasons of electrodynamic and thermal stability, technical superconducting 
materials presently in use are manufactured in the form of twisted multifilamentary 
strands. The common choice for accelerator magnets is to cable the strands in flat, 
keystoned cables, of the so called Rutherford type. These cables offer the advantage 
of high compaction fraction with minimal distortion and degradation of the 
superconducting strand, good mechanical stability and well controlled geometry 
satisfying the strict requirements for the accurate placement of conductors necessary 
for field homogeneity. These cables achieve high operating current density in the 
range of 300 to 500 A/mm2. 
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Figure 12. Cross section of a Rutherford cable 
 
The flat Rutherford cables are wound in layers consisting of several compact 
conductor blocks, that can be assumed with uniform current density. The blocks are 
separated by wedges. The arrangement of the conductor in the blocks and of the 
blocks in the coil is optimised to achieve the desired field momogeneity. As an 
example we report the cross sections of the coils for the LHC dipole and quadrupole, 
with the flux lines showing the direction of the magnetic field in the bore and in the 
coil. 
 

  
 

Figure 13. Cross section of the coil of the LHC dipole (left) and of the LHC quadrupole (right). 
 
Under operating conditions the coils are subjected to a large Lorentz force. In the first 
quarter of the coil the electromagnetic force acts in positive direction along along x, 
trying to explode the coil, and negative y direction, squeezing the conductors towards 
the midplane. In the case of the LHC dipole the electromagnetic force for a quadrant 
at nominal field (8.33 T) is 170 tonnes/m in x direction and –85 tonnes/m in y 
direction. The large structural loads are sustained by steel or alluminium collars that 
pre-compress and constrain the coils. 
 
The design of accelerator magnets varies strongly depending on the objective, the 
available manufacturing technology and design choices. Examples of the different 
dipole magnet cross sections developed and built for the major superconducting 
acceelrator projects are given below. In the case of the LHC, the collars enclose two 
coils in the same structure. The collared coil assembly is surrounded by a massive iron 
yoke that on one hand closes the magnetic circuit, and on the other hand provides 
additional structural strength transmitting the load to an external steel cylinder. The 
outer cylinder provides leak tightness for the helium bath (subcooled, 1.9 K and 1 bar 
superfluid helium). Cooling is assured by a heat exchanger located in the iron yoke. 
The magnet is enclosed in a thermal shield and in a cryostat that provide vacuum 
tightness and completes the unit. 
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Figure 14. Cross section of the superconducting dipole magnets for large particle accelerators built or 

developed so far. 
 

 
Figure 15. Cross section of the LHC dipole. 

 
Magnetic behaviour of superconducting cables 
 
For accelerator magnets it is very important to know and control the contribution of 
the superconducting cable to the magnetic field. In general terms any superconductor 
behaves as a diamagnetic material. In accelerator magnets the field changes are 
usually normal to the strands and cables and uniform along the magnet length, so that 
it is sufficient to consider the case of uniform normal field variations, neglecting the 
small errors due to the real strand orientation in a cable. We assume in addition 
uniform cable properties. The resulting magnetization is also normal to the strand and 
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cable, and has opposite direction to the field change. For purely normal magnetization 
we can obtain the magnetic moment m associated with the unit volume magnetization 
M simply multiplying this last by the cross section of the cable. 
 
Three sources of magnetization are relevant for accelerator magnets: 
 

• persistent currents in the superconducting filaments 
• coupling currents in the strands, and 
• coupling currents in the cables.  

 
Persistent currents. We can compute analytically the magnetization due to the 
screening currents in a cylindrical filament, assuming that the critical current has a 
negligible variation within the filament. If the external field changes in a cyclic 
regime, each time reversing completely the screening current patterns, we obtain that 
the change ΔM of the module of the magnetization M after a field change ΔB 
is[Wilson-83, Carr-83]: 
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in the penetration phase, until the maximum trapped magnetization is reached: 
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after full penetration. The first penetration field (for virgin initial state) is given by: 
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and full penetration is obtained in non-virgin state after a field change twice as large. 
Above we have used Jc for the field dependent critical current density and D for the 
filament diameter. The factor λ is the ratio of superconductor in the strand cross 
section, appearing because we have referred the magnetization to the unit volume of 
the cable (we neglect for simplicity voids in the cable). 
 
Strand coupling currents. The filaments in a single strand are electromagnetically 
coupled[Wilson-83], meaning that magnetic flux changes transverse to the strand 
induce eddy currents that circulate in the superconducting filaments and close 
resistively across the strand matrix. Coupling currents are established and decay with 
a characteristic time constant τ that depends on the twist pitch of the filaments in the 
strand lp and on the matrix (effective) transverse resistivity ρeff. For NbTi strands used 
in accelerator magnets this time constant is of the order of 10 ms.  
 
Assuming that the coupling currents are fully established (i.e. for ramp times much 
larger than the time constant τ of the currents), the module of the magnetization M of 
a circular superconducting strand subjected to a transverse field change &B  is given by 
[Wilson-83]: 



Luca Bottura Applied Superconductivity II SS 2002 Lesson#5, p20 

 

M
l

B
eff

p
=

!

"
#

$

%
&

µ

' (
0

2

2

&  

 
proportional to the ramp-rate.  
 
Cable coupling currents. A superconducting, flat cable for particle accelerator 
magnets responds to field changes in a manner similar to the filaments in a strand. In 
this case the superconducting strands themselves are coupled. Coupling currents flow 
along the strands and cross-over at the points where the strands touch each other. We 
can identify at least two such type of contacts, namely that of crossing strands, 
touching in a point, and that of adjacent strands, touching ideally along a line. It is 
customary to characterize the contacts through two resistances, referred to a single 
contact of two strands, the transverse Rc and the adjacent Ra resistances. 
 
In the case of a homogeneous field variation &B!  normal to the wide face of an 
infinitely long cable with constant contact resistances a convenient expression for the 
magnetization associated to fully established coupling currents is [Wilson-72]: 
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where N is the number of strands, α is the aspect ratio of the cable (ratio of width to 
thickness) and Lp is the cable twist pitch. The first term in brackets is originated by 
coupling currents closing at the crossing of strands, while the second term is due to 
currents closing on adjacent strands. We see at once that as in general ! >> 1 , the 
second term can be neglected when the transverse and adjacent contact resistances are 
of the same order of magnitude. Under the same assumptions above, for a uniform 
field variation &

//
B  normal to the thin face of the cable the magnetization is given by: 
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Exercise – estimate the order of magnitude of the magnetiaztion of an LHC cable for the main 
bending dipoles. The main characteristics of this cable are reported in table 1 below. For LHC 
particle injection is foreseen at 0.54 T. The highest ramp-rate on the cables is of the order of 7 
mT/s, of which we can take approximately 5 mT/s for both components normal and parallel to 
the broad face. 
 
Magnetization in the superconducting filaments will be largest at the lowest field levels (when 
the critical current density is large). At the injection field the NbTi has a critical current density 
in the range of 20,000 A/mm2. The calculation is therefore performed at injection conditions. 
 
If we compute the magnetization components as discussed in the previous sections we obtain: 
 
• filaments magnetization 14 (mT) 
• filaments coupling currents 0.3 (mT) 
• cable magnetization normal to the broad face 3.1 (mT) 
• cable magnetization normal to the thin face 0.001 (mT) 
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We see clearly that for this typical conductor design and operating conditions the 

dominant magnetization is due to the filament persistent currents. Generally, in the range of 
cable parameters given above, the magnetization due to coupling currents within the strand, 
and the cable magnetization due to field changes normal to the thin face of the cable are 
negligible. 

 
Main properties of the LHC strand and inner layer cable. 

 
 

  

Strand     

 Diameter d (mm) 1.065 

 Copper:NbTi ratio  (-) 1.6 

 Filling factor ! (-) 0.38 

 Filament size D (µm) 7 

 Twist pitch lp (mm) 25 

 Critical current density Jc   

 at 0.5 T, 1.8 K  (A/mm
2
) " 20000 

 at 8 T, 1.8 K  (A/mm
2
) " 2000 

Cable     

 Number of strands N (-) 28 

 Cable dimensions    

  thin edge h1 (mm) 1.72 

  thick edge h2 (mm) 2.06 

  width w (mm) 15.0 

 Aspect ratio # (-) 7.9 

 Twist pitch Lp (mm) 110 

 Cross contact resistance Rc (µ$) " 10 

 Adjacent contact resistance Ra (µ$) " 10 

  
 
 
Field errors in accelerator magnets 
 
A systematic approach to the magnetic field analysis in an accelerator magnet is to 
break the total field generated in the bore into its components of different origin. We 
can identify for steady state operation the following field components: 
 
• geometric, related to the cable positions in the winding pack, the accuracy of their 

placement and movements during energization; 
 
• iron magnetization, accounting for the magnetization and saturation of the iron 

yoke as a function of the excitation field; 
 
• persistent currents, originating from the contribution of the magnetization of the 

superconducting filaments to the field. 
 
The first two geometric and iron magnetization are purely static and are proportional 
to the excitation current. The third, the persistent current magnetization, is in principle 
also of steady state nature, but can show a long term variation as will be discussed 
later on. The persistent currents magnetization has a large hysteresis that appears as a 
difference in the ramp-up and ramp-down branches of the magnet loadline at low 
excitation. These three contributions, in the case of a perfect magnet, will appear only 
on allowed harmonics, i.e. those permitted by the symmetry conditions of the coil. As 
already discussed, this is evident for symmetric geometry. If the iron geometry and 
superconductor properties also respect the magnet symmetry conditions, the resulting 
magnetizations, both for iron and superconductor, will have the same degree of 
symmetry and thus will only contribute to allowed harmonics. 
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An example of the three different contributions in steady state can be clearly seen in 
the measurement of normal sextupole in a superconducting dipole as shown in Fig. 1. 
We have plotted there the transfer function (ratio of field to current) of the normal 
dipole and the sextupole components as measured in steady state conditions at 
different levels of current during the ramp-up and ramp-down in an LHC dipole. The 
average value of both multipoles for ramp-up and -down is constant for fields below 
approximately 5 kA, according to the linear contribution associated to the winding 
geometry. Above 5 kA we see that the average of the transfer function strongly 
deviates from a constant owing to the iron saturation. The superconductor 
magnetization is responsible for the hysteresis in the two curves at low field. The the 
field dependence of the magnetization is clearly visible. 
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Figure 16. Transfer function of the normal dipole (left) and normal sextupole (right) for a LHC 
prototype dipole. The circle indicate injection condition (760 A). Nominal operating field is reached at 

11850 A. 
 
In addition to the above contributions, it is possible to observe in accelerator magnets 
the following effect of dynamic nature: 
 
• coupling currents, due to the ramp-rate dependent magnetization in the 

superconducting strands and cables; 
 
• field decay during constant current plateaux and snapback at the start of the ramp. 
 
As discussed above, the cable magnetic moment originating from coupling currents is 
proportional to the field ramp-rate and inversely proportional to the transverse strand 
and cable resistances. In fact the ramp-rate magnetization is mainly associated with 
the field change normal to the broad face of the cable.The effect of coupling currents 
is a constant additional hysteresis for a given ramp-rate over the whole field range.  
 
The interstrand resistance of the cable is known to depend crytically on several 
factors, among them the surface conditions of the strands, their ageing, heat treatment 
conditions during coil fabrication, and possibly the electromagnetic pressure on the 
strand contacts at operation. Hence in a coil we can have an arbitrary distribution of 
interstrand resistances along the magnet length and within the winding cross section. 
This distribution does not necessarily respect the geometrical symmetries. The 
consequence is that the magnetization can vary on a cable-by-cable basis within the 
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winding and in principle all harmonics can be present at ramp, as shown above by the 
existence of a non-zero normal quadrupole. 
 

Normal quadrupole during ramps
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Figure 17. Measurement of normal quadrupole and normal sextupole during ramps at increasing ramp-
rates, in an LHC prototype. Both quadrupole and sextupole are given here in non-normalised terms to 

show the constant shift of the steady ramp-up and -down branches. 
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Figure 18. Decay of the sextupole in a LHC prototype and subsequent snap-back. 

 
The decay and snap-back is a phenomenon that was unexpected and surprising during 
the first operation of the Tevatron collider. It was deduced then from the evidence of 
large chromaticity drifts, or decays, during periods when the excitation current of the 
magnets was constant. At the restart of ramping, after the plateau, the sextupole 
returned to its original value in a few seconds. This sextupole snap-back could be 
observed in the Tevatron through collateral effects, such as emittance blow-up and 
beam losses. Tables were generated based on independent magnetic measurements of 
dipole magnets and used in Tevatron to cope with the variations of chromaticity. It 
was found then that the sextupole drift at injection is increased pre-cycling the magnet 
at high operating current, increasing the duration of the precycle flat-top or repeating 
the pre-cycling procedure several times before the measurement. In summary, the 
magnet has a memory of the previous powering history. This memory can be erased 
only quenching the magnet.  
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The nature of the field decay can be explained as an interaction among current 
distribution in the cable and persistent current filament magnetization. Any change of 
current distribution in a cable is associated with a periodic variation of the local 
magnetic field (mostly the self-field) along the cable. In turn any field variation 
causes a change in the magnetization state of the superconducting filaments. Because 
of the non-linear response of the superconductor magnetization to changes in the 
external field, the net change of the magnetization of the filaments is always in the 
direction of a decreasing absolute value of the average cable magnetization. This 
indeed explains the systematic drift of the allowed multipoles in the direction of 
decreasing magnetization contribution. The diffusion of the current profile in the 
cable has very long time constants which are coherent with the characteristic times 
observed on the field drift (hundreds of seconds and above). Finally, the internal field 
changes necessary to explain the drift of the harmonics observed is small, in the range 
of 10 mT. Such a field change can be generated in a typical Rutherford cable for 
accelerators by a current redistribution among strands of some 10 A, a value which 
also coherent with the expected current imbalances, e.g. generated by the localised 
field variations discussed in the previous section. 
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