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Accelerator principles

Particle accelerators are one of the main tools of nuclear physics. Accelerator research
is usually carried out smashing high energy particles against targets (fixed targets
experiments), or against each other (collider experiments). The products of the
interactions depend on the nature and energy of the particles flying in the accelerator.
In general higher particle energy is associated with higher resolution, much as a
microscope resolution increases with the reduction of the wavelength of the light used
to illuminate the object.

The present state of the art for the energy of a single particle in an accelerator is 1
TeV (1.6 107 J) provided by the Tevatron complex at FNAL. CERN is presently
building the Large Hadron Collider (LHC), that will provide towards the end of the
first decade of 2000 counter-rotating protons with energy nearly one order of
magnitude higher, 7 TeV, and 14 TeV in the center of mass of two colliding protons.
At this energy level the particles are highly relativistic. Figure 1 shows the so called
Livingston chart with the evolution of the accelerator energy in time and as a function
of the evolving accelerator technology.

Modern accelerators are of two main types: linear accelerators (also referred to as
linacs) and circular accelerators . Linear accelerators (see Fig. 2) consist of a sequence
of accelerating cavities where a suitable electric field accelerates the particles and
focussing elements that eventually produce a small, high energetic beam emerging at
the end of the accelerator. In linacs the maximum particle energy is determined by the
product of number and strength of accelerating stations. For a given accelerating
strength this product corresponds to length of the accelerator that is generally limited
by practical considerations and cost.

Circular accelerators (see Fig. 3) consist of accelerating cavities and guiding magnets
with uniform field that bend the beam on a closed orbit, eventually bringing it back to
the accelerating station. The advantage of this type of accelerators is that the beam can
be accelerated in small quanta at each passage and in the absence of losses the
maximum energy that can be reached does not depend on the number and strength of
accelerating stations.
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Figure 1. Livingston chart for modern accelerators. The time scale is the year of completion of the
accelerator, the vertical scale is the equivalent energy of particles in a beam colliding with a proton at
rest that has the same center of mass energy.
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Figure 2. Principle of a linear accelerator.

In circular accelerators the maximum beam energy is limited by two processes. On
one side the beam bending radius p in the guiding magnets depends on the beam

energy E and on the magnetic field B:

o o]

where the energy E is in units of [GeV], the particle charge ¢ is in units of electron
charge and the magnetic field B is in units of [T]. As an example a 1 TeV (£=1000
GeV) proton (¢g=1) is bent by a 5 T field on a radius p = 667 m. In practice the
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magnetic field that can be produced is limited whatever the technology used
(permanent magnets, classical or superconducting electromagnets), hence the
accelerator size grows linearly with the maximum beam energy.

Figure 3. Principle of a circular accelerator (shown here for the case of the Large Electron Positron
collider, LEP).

On the other side a particle on a bent trajectory emits synchrotron radiation and thus
looses energy. The energy lost OF per turn in the accelerator is given by:

E‘[Gev] 1

4

SE[keV |=88.5
plm| m

where m is the rest mass of the particle in units of the electron mass at rest, and the
energy E is again in units of [GeV]. As an example a proton (m = 1840) with an
energy of 1 TeV (E=1000 GeV) and bent on the curvature radius found above, p =
667 m, would loose an energy of 6F = 0.012 keV per turn.

The energy lost per turn decreases with the fourth power of the rest mass of the
particle. For comparison, an electron (m = 1) with the same energy and on the same
curvature radius would loose ideally an astronomic amount of energy oF = 1.3 10"
keV per turn, corresponding to 130 TeV, a factor 10" larger than in the case of a
proton. This is the reason why modern circular accelerators use heavy particles (to
minimise energy loss), while synchrotron radiation sources use electrons (to maximise
radiation). We also see that the energy lost per turn increases with the fourth power of
the energy. At a given point the energy replenishment at the accelerating cavity is
equal to the energy lost in one turn along the accelerator and the limit is reached.
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Exercise — plot the cost function obtained as a linear combination of civil engineering costs
(proportional to the length), magnetic system cost (proportional to the length and the magnetic
field) and power installed for acceleration and operation (proportional to the energy loss per
turn):

C=C,p+C,pB" + C,0E

and study the behaviour as a function of the accelerator radius and field, at constant E. Show
that an optimum can be found both with respect to the radius and to the field.

The cost function at constant energy can be written in terms of the radius only as follows:

4

C=Cp+ Czp(i) + 88.5C3(£) 1
0.3gp m) p

and in terms of the field only as follows:

3
. £ +C, £ B"" +88.5C, E—40.3qB
0.3gB 0.3g m

Below is a plot of the cost function and its contributions for the following choice of
parameters:

C,=3107,C,=510°,C;=810°,n=2,9g=1, m=1800, E= 1000 GeV.
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Circular accelerators are filled from an injector, that can also be a circular accelerator
of smaller size. The beam is subsequently accelerated until it reaches the maximum
energy and ejected into a following acceleration stage , into a target (fixed target
operation) or stored until it is brought in collision with a counter-circulating beam at
the experimental detectors (collider operation). In the operation of such a chain it is
extremely important that the bending strength of the magnets tracks precisely the
energy change of the beam during acceleration. This requirement of synchronicity is
the reason why circular accelerators are often named synchrotrons.

In addition to bending the beam, the magnetic field is used in synchrotrons to focus
the particle and thus maintain the beam size small. In the presence of a pure bending
beam, perfectly homogeneous in space as shown in Fig. 4(a), particles in the beam
with slight deviations from nominal conditions (small momentum or orbit errors)
would spiral and drift away from the nominal orbit, eventually leaving the accelerator.
This is avoided using gradient fields, such as shown in Fig. 4(b). A gradient field
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bends strongly particles that are far away from the nominal orbit, so that the beam is
focussed in the direction of the gradient. However, because of the fact that the field
gradients in the three space directions are not independent, a focussing gradient in one
direction, e.g. x direction as in Fig. 4(b), corresponds necessarily to a defocussing
gradient in the normal direction, in this case y. The defocussing effect is compensated
at the next gradient magnet, powered with opposite polarity, thus producing a
focussing effect in y direction and a defocussing effect in x direction. Provided that
the gradient magnets are sufficiently close to each other, the net effect on the particles
is focussing.

(a) (b)
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Figure 4. Effect of a uniform (dipole) and a gradient (quadrupole) field on a positive charged particle
initially moving in the z direction (entering the page).

This is the basic layout of a modern accelerator magnets, consisting of a regular
repetition of cells of focussing magnets (indicated with the letter F), bending magnets
(indicated with the letter O), defocussing magnets (indicated with the letter D) and
bending magnets (O), or FODO. In addition to the magnets mentioned above, higher
order gradient magnets are necessary to correct for the non-linear beam response to
perturbations and to stabilize the beam. This is shown schematically in Fig. 5 that
reports the structure of the basic cell of the LHC collider and includes all main
correcting systems.
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Figure 5. FODO cell of the LHC, including the main correcting systems.

Because of their importance, this lecture focusses on superconducting accelerator
magnets. Among the many aspects that are relevant for the design and construction, it
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concentrates on the magnetic field and the influence of superconducting effects on the
high field quality requested in accelerators.

Complex magnetic field notation for accelerator magnets

Magnets for accelerators are long and slender, and the field in the small bore can be
considered with good approximation as purely 2-D. We can therefore concentrate on
the cross section (x,y) and ignore the length z. With this assumption it is possible to
use the complex notation first introduced by Beth [Beth-66, Beth-67] to simplify the
mathematics. A function B is defined in the current-free space from the two
components of the field as follows:

B=B, +iB,

where i is the imaginary unit, s = x + iy is the complex variable and s* = x - iy is its
complex conjugate. The complex function B is analytic in the current-free space, as it
satisfies the Cauchy-Riemann conditions:

dRe(B) aIm(B)=0

0x ady
aRe(B)+ 9Im(B) _ 0
dy dx

Exercise - proove that the function B is analytic using the quasi-static Maxwell equations for

linear materials Vx B = y,J and VB =0.

We take the derivatives as needed and obtain:

0B, 0B,

dx dy

0B, 0B
Ly—2=0

dy 0x

the first condition is true because the following equation holds in free space:
VxB=0
and the second condition is true because:

VB =0

Since then B is analytic, we can expand it in Taylor series around any point. Taking in
particular the bore of the magnet and considering the disk that extends up to the first
conductor, i.e. the current-free region, we can write that B is given by the following

series:
S
]?ny
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where the complex coefficients C, are the so called harmonics or multipoles of the
field and R,.r is a reference radius chosen conveniently to scale the coefficients. The
complex multipoles are written in terms of their real and imaginary parts:

C, =B, +iA,

where the B, are called the normal multipoles, while the 4, are the skew multipoles.
The coefficients C,, B, and A4, are in units of T at the reference radius. A magnet is
said to generate a pure normal or skew multipole of order m if the expansion of the
field in the magnet bore contains only one coefficient B, or A4, respectively. In
particular a magnet with a field expansion containing only the term B, is said to
generate a pure normal dipole field. The field in this case is given by:

B, =B,

it is constant and oriented along y and corresponds to the bending field examined
above. If the only non-zero term is A4, then the magnet is said to generate a pure skew
dipole field, given by:

B =4,

constant in space and oriented along y. A pure normal quadrupole field is obtained
when the only non-zero coefficient is B:

B.=B,—Y B =B —
Rref

X v 2
Rr@f

that corresponds to the gradient field examined above. If only A, is non-zero the field
is then:

Rref Rref
also called a skew quadrupole. The higher order terms are called by analogy normal
and skew sextupole (B3 and 43 respectively), normal and skew octupole (B4 and A4),

and so on.

It is normal practice in the measurement and analysis of the field to refer to
normalised multipole coefficients, which we will indicate with lowercase letters:

c,=b +ia,

The normalised coefficients are obtained for a normal magnet of order m (recall that
the dipole has m = 1) using:
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C B, A
c, =10 B" =104(B" +iB”)=bn +ia,

m m m

where the factor 10" is inserted for convenience, as higher order multipoles are
generally small, typically of the order of 10* of the main field component. Although
the normalised harmonic coefficient are dimensionless, they are usually quoted in so
called units, a unit being the result of the normalization and scaling of the expression
above.

Exercise — plot the field vectors for dipole, quadrupole and sextupole.

The normal and skew dipole B; and A; are a uniform field oriented along the y and x axes
respectively

Skew dipole

y A

Normal dipole

y &

\

\

X

The normal quadrupole B; is a constant gradient field, oriented in y direction along the x axis
and in x direction along they axis. The skew quadrupole A, is obtained from the normal
quadrupole by a positive (counterclockwise) rotation of 45 degrees.

Normal quadrupole Skew quadrupole

Yo

Magnetic field of elementary current and moments

Magnetic field can be generated either flowing electric current in a conductor, or
magnetizing suitable material. Both techniques are used for accelerator magnets. It is
hence necessary to know the field generated by an elementary current and magnetic
moment. The field generated at a location s by a line of current / flowing in z
direction and located at a position R =R, + i R, in complex plane is given by:

Wl 1

2t s-R

Luca Bottura Applied Superconductivity 11 SS 2002 Lesson#3, p8



L

X

Figure 6. Field produced by a current line I placed at a position R in complex plane.

It is possible to compute the multipoles generated by this current line as follows:

Cn = _‘u—ol Ri
27R,, | R

where we see that a single current line generates multipoles of all orders.

n

Exercise — proove that the multipoles of a current line are given by the above expression.

We take the expression for the field of a current line and we write it as follows:

B=MOI 1 =_MOI 1

1
2t s-R 21 R 1_(s)

the last term in the above equation can be expanded in series as follows:
n-1
1 i s
1 _ i n=l| R
R
and we can finally write the magnetic field using the above result:

n n-1
o]

B = _E Au“OI Rref S
2R, | R | |R

n=1 ref

where the product of the first two terms in the sum can be identified to be equal to C,,.

As we will see later, it is in addition often necessary to compute the field generated at
a location s by a magnetic moment of strength m = m, + i m, in the complex plane
and located at a position R = R, + i R,. The magnetic field is given by:

Hom *
B=-_—_20—"
2.717(S—R)2

while the associated multipoles are given by:
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Figure 7. Field produced by a magnetic moment m placed at a position R in complex plane.

Most superconducting accelerator magnets are enclosed in an iron yoke which
increases the field and shields the exterior from the intense magnetic field. In the case
of an ideal, round iron yoke with radius Rj.,, centered with the origin of the
coordinate system and large permeability u the effect of the iron can be computed
using the method of images. For a current line of module 7 and located at R the image
current has a module /" and is placed at a radius R’ obtained from:

2
4 Riron

R*

For a magnetic moment m located at R it is also possible to compute the image in the
iron shell. The position of the image is the same R’ already computed, and the
strength and direction of the image magnetic moment is obtained from:

2
-1 R
' u yocm*

“u+l R?

Associated field and multipoles are computed adding the contribution of this image
current to the physical one.
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Figure 8. Image of current (left) and of magnetic moment (right) in a circular iron yoke.

Magnetic design

Magnets of a desired order can be built by a proper arrangement of the current in
space, so as to produce a given multipole while cancelling other selected multipoles.
The simplest current distribution that generates a pure multipole is the so called cos(6)
arrangement. In this arrangement the current is distributed on a circle of radius R with
a cosinus current density given by:

J=J, cos(p@)

Figure 9. Schematic cos(p 6) current distribution, with p = 1.

The field generated inside the circle can be computed as the integral of all elementary
contributions and is given by:

p-1 P
ol (R ) (s
2 | R R,

where we recognize that a cos(p0) current distribution generates a pure normal
multipole of order p and strength:

P
B hm(&)

-1

-1

’ 2 R

Similarly a sin(p6) arrangement of the type:
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J =J,sin(p0o)

produces a pure skew multipole of order p and strength:

p
4 =&(R_fJ

-1

’ 2 R

Exercise — show that the cos(pf) and a sin(pf) current distribution on a circle of radius R
produce pure normal and skew multipoles.

We consider the cos(p6) distribution and we take the elementary contribution of a current
element of extension d@ on the circle of radius R, given by:

dl =J, cos(p@ )RdH

and we compute the multipole contribution generated by this current element located at the
complex position R = R ¢'*:

n

R, R, \
dC = L(ﬁ) d]=_A(ﬁ) J, cos(p6 RO

27k, | R 2R,

simplifying and integrating over the circle we obtain:

R
C, - fdc, - —ﬂ(ﬁ)
2 R

The integral of the trigonometric functions has the following known results

n

) J 7’[005(110 )— isin(n@ )]cos(p@ )a’E)

2

fcos(n@)cos(p@ X6 = 7o,
0

2

fsin(n@)cos(p@ Y0 =0

0

and we therefore obtain that
-1

P
‘LLJ Rre'
C,-5,- T(T) for n=p

0 for n=p

We now consider the sin(p6) distribution and we proceed in the same way. The elementary
current is:

dI = J, sin(p0 RdO

that, once integrated, produces the following multipoles:
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n

R
C, = [dc, - _ﬂ( f)
2nl R

-1 2
Jy f[cos(n@ )-isin(n0)fin(p6 4o
0
The integral above can be solved using the additional known result:
2
fsin(n@ Ysin(p6 Mo = o,
0

leading to:

-1
Ty (R )’
M(_f) for n=p

0 for n=p

The current density distribution above is clearly not practical to wind magnets., that
require the use of cables of finite size. A useful result is however achieved
considering two cylinders of radius R with uniform current density J in z direction and
placed along the x axis with the centers at a distance d so that they intersect. The
cylinders have current in opposite direction, and the intersecting region is current free.
In this case the magnetic field generated in the current-free region is uniform and it is
given by:

Bop - MJd
g 2
The field generated by this configuration is therefore a perfect normal dipole. A skew

dipole can be obtained intersecting two cylinders placed along the y axis.

A

Figure 10. Schematic of the current distribution obtained intersecting two cylinders.

Exercise — proove that two intersecting cylinders generate a pure dipole field in the current-free
region.

To proove this we compute the field at a point P placed inside both cylinders. The rightmost
cylinder has a uniform positive current density J, while the leftmost cylinder has a uniform,
negative current density -J. To simplify the calculation we use the vector representation of the
field. The point P is located at distance d; with respect to the center of the leftmost circle, and
distance d, with respect to the center of the rightmost circle. The point is at an height h with
respect to the axis passing through the two centers.
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For the field calculation we make use of the fact that the contour integral of the magnetic field
along the boundary I'" of a simply connected surface S is equal to the flux of the current density
through the surface S:

Bdl' = JdS
f ‘uo{

r(s)

Taking as the surface S the circle coaxial with the center of the rightmost circle, and radius 1y,
the field from the first circle has constant strength and direction tangent to the circumference at
all points. At the point P we have therefore that the two components of the magnetic field are:

B! = _ MR
* 2
B - _ uyJd,
g 2

For the second circle we use the same method and we can write that at the same point the
magnetic field is

B? =M0_Jh
! 2

B2 —_ uyJd,
Y 2

The total field at P is therefore:

B =B +B=0
_ WoJd, _ woJd, _ woJd
2 2 2

1 2
B, =B, +B, =

The only non-zero field component is directed along y, and the field does not depend on the
position, i.e. it is a perfect normal dipole.

It is worth noticing that other remarkable cases can be obtained intersecting ellipses,
and in particular a perfect quadrupole can be obtained intersecting two ellipses with
major axes normal to each other. Similar, more relevant results, are obtained using
sectors with constant current density as shown below. Although sector current
distribution cannot produce a pure multipole, and contains necessarily other
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multipoles as error terms, the error content can be minimised by a proper choice of the
extension of the sector or using multiple sectors compensating each other.

Y, -J
/ R
+J
+J
X
+J
X
X a

-J

Figure 11. Sector current distribution that generates a dipole field (left) and a quadrupole field (right).

All magnetic configurations examined so far have strong symmetry. In general a
perfectly symmetric multipole magnet of order m is such that the geometry of the
winding and iron is rotationally symmetric by the angle s/m. After such a rotation we
obtain an identical magnet if in addition we invert the current direction. This
symmetry leads directly to restrictions on the orders that are allowed in the multipole
expansion. In particular the allowed multipoles for a magnet of order m are only those
that have order n:

n=mQk+1)

where £ is an integer. For the dipole the series of allowed multipoles is therefore
n={13,5,7,..}

while for a quadrupole the series of allowed multipoles is:

n=1{2,6,10,14,...}

In addition accelerator magnets are usually produced and positioned so that they
generate a pure normal or skew multipole of order m. A normal multipole magnet has
top-bottom symmetry in the geometry and current. As a consequence the magnetic
field on the midplane has strictly y direction. This implies immediatly that the
imaginary (skew) part of any allowed multipole coefficient must be zero. Similarly a
skew magnet has top-bottom symmetric geometry and antisymmetric current. In this
case the field on the midplane has x direction, so that all allowed coefficients have
zero real (normal) part. The result is that in a perfectly symmetric normal multipole
magnet only the normal allowed multipoles are present, and similarly for a perfectly
symmetric skew multipole magnet, where only skew allowed multipoles are present.

Luca Bottura Applied Superconductivity 11 SS 2002 Lesson#5, p15



Exercise — proove that the allowed harmonics in a perfectly symmetric magnet of oredr m are

n=mQk+1).
We can express the symmetry condition on a general harmonic coefficient C, by writing that:

!

C =Ce'm=-C

n n
where the primed coefficient indicates the value of the harmonic after rotation and we have

used a known property of the rotation of reference frame on the harmonic coefficients. The
condition can be satisfied only when:

LT
m—

e " =-1

or alternatively

T . T
cos(n—)ﬂsm(n—) =-1
m m

Equating the real and imaginary part in the above relation we can write that:

T
cos(n—) =-1
m
sin(nz) =0
m

that is satisfied when the argument of the trigonometric functions is equal to s or its multiples
of 2. We can therefore write the condition as

n Z ok +1
m

where £ is an arbitrary non-negative integer number. This relation is verified for all # such that:

n=mQk+1)

Magnet construction

For reasons of electrodynamic and thermal stability, technical superconducting
materials presently in use are manufactured in the form of twisted multifilamentary
strands. The common choice for accelerator magnets is to cable the strands in flat,
keystoned cables, of the so called Rutherford type. These cables offer the advantage
of high compaction fraction with minimal distortion and degradation of the
superconducting strand, good mechanical stability and well controlled geometry
satisfying the strict requirements for the accurate placement of conductors necessary
for field homogeneity. These cables achieve high operating current density in the
range of 300 to 500 A/mm’.
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Figure 12. Cross section of a Rutherford cable

The flat Rutherford cables are wound in layers consisting of several compact
conductor blocks, that can be assumed with uniform current density. The blocks are
separated by wedges. The arrangement of the conductor in the blocks and of the
blocks in the coil is optimised to achieve the desired field momogeneity. As an
example we report the cross sections of the coils for the LHC dipole and quadrupole,
with the flux lines showing the direction of the magnetic field in the bore and in the
coil.

LHC Arc Dipole (6 Blocks-2000) LHC Arc Quadrupole

Figure 13. Cross section of the coil of the LHC dipole (left) and of the LHC quadrupole (right).

Under operating conditions the coils are subjected to a large Lorentz force. In the first
quarter of the coil the electromagnetic force acts in positive direction along along x,
trying to explode the coil, and negative y direction, squeezing the conductors towards
the midplane. In the case of the LHC dipole the electromagnetic force for a quadrant
at nominal field (8.33 T) is 170 tonnes/m in x direction and —85 tonnes/m in y
direction. The large structural loads are sustained by steel or alluminium collars that
pre-compress and constrain the coils.

The design of accelerator magnets varies strongly depending on the objective, the
available manufacturing technology and design choices. Examples of the different
dipole magnet cross sections developed and built for the major superconducting
acceelrator projects are given below. In the case of the LHC, the collars enclose two
coils in the same structure. The collared coil assembly is surrounded by a massive iron
yoke that on one hand closes the magnetic circuit, and on the other hand provides
additional structural strength transmitting the load to an external steel cylinder. The
outer cylinder provides leak tightness for the helium bath (subcooled, 1.9 K and 1 bar
superfluid helium). Cooling is assured by a heat exchanger located in the iron yoke.
The magnet is enclosed in a thermal shield and in a cryostat that provide vacuum
tightness and completes the unit.
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HERA RHIC

Figure 14. Cross section of the superconducting dipole magnets for large particle accelerators built or
developed so far.
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Figure 15. Cross section of the LHC dipole.
Magnetic behaviour of superconducting cables

For accelerator magnets it is very important to know and control the contribution of
the superconducting cable to the magnetic field. In general terms any superconductor
behaves as a diamagnetic material. In accelerator magnets the field changes are
usually normal to the strands and cables and uniform along the magnet length, so that
it is sufficient to consider the case of uniform normal field variations, neglecting the
small errors due to the real strand orientation in a cable. We assume in addition
uniform cable properties. The resulting magnetization is also normal to the strand and
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cable, and has opposite direction to the field change. For purely normal magnetization
we can obtain the magnetic moment m associated with the unit volume magnetization
M simply multiplying this last by the cross section of the cable.

Three sources of magnetization are relevant for accelerator magnets:

* persistent currents in the superconducting filaments
* coupling currents in the strands, and
* coupling currents in the cables.

Persistent currents. We can compute analytically the magnetization due to the
screening currents in a cylindrical filament, assuming that the critical current has a
negligible variation within the filament. If the external field changes in a cyclic
regime, each time reversing completely the screening current patterns, we obtain that
the change AM of the module of the magnetization M after a field change AB
is[ Wilson-83, Carr-83]:

3

4 AB
=5 MD|1-|1-5—| | for AB=2B,

p
in the penetration phase, until the maximum trapped magnetization is reached:

=2ﬂ)\JD for AB>2B
3r ¢ r

M

after full penetration. The first penetration field (for virgin initial state) is given by:

B, = YyJ D

T
and full penetration is obtained in non-virgin state after a field change twice as large.
Above we have used J. for the field dependent critical current density and D for the
filament diameter. The factor A is the ratio of superconductor in the strand cross
section, appearing because we have referred the magnetization to the unit volume of
the cable (we neglect for simplicity voids in the cable).

Strand coupling currents. The filaments in a single strand are electromagnetically
coupled[Wilson-83], meaning that magnetic flux changes transverse to the strand
induce eddy currents that circulate in the superconducting filaments and close
resistively across the strand matrix. Coupling currents are established and decay with
a characteristic time constant T that depends on the twist pitch of the filaments in the
strand /, and on the matrix (effective) transverse resistivity p.s. For NbTi strands used
in accelerator magnets this time constant is of the order of 10 ms.

Assuming that the coupling currents are fully established (i.e. for ramp times much
larger than the time constant 7 of the currents), the module of the magnetization M of

a circular superconducting strand subjected to a transverse field change B is given by
[Wilson-83]:
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proportional to the ramp-rate.

Cable coupling currents. A superconducting, flat cable for particle accelerator
magnets responds to field changes in a manner similar to the filaments in a strand. In
this case the superconducting strands themselves are coupled. Coupling currents flow
along the strands and cross-over at the points where the strands touch each other. We
can identify at least two such type of contacts, namely that of crossing strands,
touching in a point, and that of adjacent strands, touching ideally along a line. It is
customary to characterize the contacts through two resistances, referred to a single
contact of two strands, the transverse R, and the adjacent R, resistances.

In the case of a homogeneous field variation B, normal to the wide face of an

infinitely long cable with constant contact resistances a convenient expression for the
magnetization associated to fully established coupling currents is [Wilson-72]:

W-N)a N 1
120 R 96 aR,

c

B,

M= u,L,

where N is the number of strands, « is the aspect ratio of the cable (ratio of width to
thickness) and L, is the cable twist pitch. The first term in brackets is originated by
coupling currents closing at the crossing of strands, while the second term is due to
currents closing on adjacent strands. We see at once that as in general a >> 1, the
second term can be neglected when the transverse and adjacent contact resistances are
of the same order of magnitude. Under the same assumptions above, for a uniform

field variation B, normal to the thin face of the cable the magnetization is given by:

Exercise — estimate the order of magnitude of the magnetiaztion of an LHC cable for the main
bending dipoles. The main characteristics of this cable are reported in table 1 below. For LHC
particle injection is foreseen at 0.54 T. The highest ramp-rate on the cables is of the order of 7
mT/s, of which we can take approximately 5 mT/s for both components normal and parallel to
the broad face.

Magnetization in the superconducting filaments will be largest at the lowest field levels (when
the critical current density is large). At the injection field the NbTi has a critical current density

in the range of 20,000 A/mm’. The calculation is therefore performed at injection conditions.

If we compute the magnetization components as discussed in the previous sections we obtain:

¢ filaments magnetization 14 (mT)
¢ filaments coupling currents 0.3  (mT)
¢ cable magnetization normal to the broad face 3.1 (mT)
¢ cable magnetization normal to the thin face 0.001 (mT)
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We see clearly that for this typical conductor design and operating conditions the
dominant magnetization is due to the filament persistent currents. Generally, in the range of
cable parameters given above, the magnetization due to coupling currents within the strand,
and the cable magnetization due to field changes normal to the thin face of the cable are

negligible.
Main properties of the LHC strand and inner layer cable.
Strand
Diameter d (mm) 1.065
Copper:NbTi ratio (-) 1.6
Filling factor A ) 0.38
Filament size D (*m) 7
Twist pitch L, (mm) 25
Critical current density Je
at0.5T, 1.8 K (A/mm®)  =20000
at8 T, 1.8 K (A/mm?)  =2000
Cable
Number of strands N ) 28
Cable dimensions
thin edge h; (mm) 1.72
thick edge 33 (mm) 2.06
width w (mm) 15.0
Aspect ratio a (-) 7.9
Twist pitch L, (mm) 110
Cross contact resistance R, (“Q) ~10
Adjacent contact resistance R, (MQ) ~10

Field errors in accelerator magnets

A systematic approach to the magnetic field analysis in an accelerator magnet is to
break the total field generated in the bore into its components of different origin. We
can identify for steady state operation the following field components:

* geometric, related to the cable positions in the winding pack, the accuracy of their
placement and movements during energization;

* iron magnetization, accounting for the magnetization and saturation of the iron
yoke as a function of the excitation field;

* persistent currents, originating from the contribution of the magnetization of the
superconducting filaments to the field.

The first two geometric and iron magnetization are purely static and are proportional
to the excitation current. The third, the persistent current magnetization, is in principle
also of steady state nature, but can show a long term variation as will be discussed
later on. The persistent currents magnetization has a large hysteresis that appears as a
difference in the ramp-up and ramp-down branches of the magnet loadline at low
excitation. These three contributions, in the case of a perfect magnet, will appear only
on allowed harmonics, i.e. those permitted by the symmetry conditions of the coil. As
already discussed, this is evident for symmetric geometry. If the iron geometry and
superconductor properties also respect the magnet symmetry conditions, the resulting
magnetizations, both for iron and superconductor, will have the same degree of
symmetry and thus will only contribute to allowed harmonics.
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An example of the three different contributions in steady state can be clearly seen in
the measurement of normal sextupole in a superconducting dipole as shown in Fig. 1.
We have plotted there the transfer function (ratio of field to current) of the normal
dipole and the sextupole components as measured in steady state conditions at
different levels of current during the ramp-up and ramp-down in an LHC dipole. The
average value of both multipoles for ramp-up and -down is constant for fields below
approximately 5 kA, according to the linear contribution associated to the winding
geometry. Above 5 kA we see that the average of the transfer function strongly
deviates from a constant owing to the iron saturation. The superconductor
magnetization is responsible for the hysteresis in the two curves at low field. The the
field dependence of the magnetization is clearly visible.
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Figure 16. Transfer function of the normal dipole (left) and normal sextupole (right) for a LHC
prototype dipole. The circle indicate injection condition (760 A). Nominal operating field is reached at
11850 A.

In addition to the above contributions, it is possible to observe in accelerator magnets
the following effect of dynamic nature:

* coupling currents, due to the ramp-rate dependent magnetization in the
superconducting strands and cables;

* field decay during constant current plateaux and snapback at the start of the ramp.

As discussed above, the cable magnetic moment originating from coupling currents is
proportional to the field ramp-rate and inversely proportional to the transverse strand
and cable resistances. In fact the ramp-rate magnetization is mainly associated with
the field change normal to the broad face of the cable.The effect of coupling currents
is a constant additional hysteresis for a given ramp-rate over the whole field range.

The interstrand resistance of the cable is known to depend crytically on several
factors, among them the surface conditions of the strands, their ageing, heat treatment
conditions during coil fabrication, and possibly the electromagnetic pressure on the
strand contacts at operation. Hence in a coil we can have an arbitrary distribution of
interstrand resistances along the magnet length and within the winding cross section.
This distribution does not necessarily respect the geometrical symmetries. The
consequence is that the magnetization can vary on a cable-by-cable basis within the
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winding and in principle all harmonics can be present at ramp, as shown above by the
existence of a non-zero normal quadrupole.

Normal quadrupole during ramps Normal sextupole during ramps
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Figure 17. Measurement of normal quadrupole and normal sextupole during ramps at increasing ramp-
rates, in an LHC prototype. Both quadrupole and sextupole are given here in non-normalised terms to
show the constant shift of the steady ramp-up and -down branches.
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Figure 18. Decay of the sextupole in a LHC prototype and subsequent snap-back.

The decay and snap-back is a phenomenon that was unexpected and surprising during
the first operation of the Tevatron collider. It was deduced then from the evidence of
large chromaticity drifts, or decays, during periods when the excitation current of the
magnets was constant. At the restart of ramping, after the plateau, the sextupole
returned to its original value in a few seconds. This sextupole snap-back could be
observed in the Tevatron through collateral effects, such as emittance blow-up and
beam losses. Tables were generated based on independent magnetic measurements of
dipole magnets and used in Tevatron to cope with the variations of chromaticity. It
was found then that the sextupole drift at injection is increased pre-cycling the magnet
at high operating current, increasing the duration of the precycle flat-top or repeating
the pre-cycling procedure several times before the measurement. In summary, the
magnet has a memory of the previous powering history. This memory can be erased
only quenching the magnet.
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The nature of the field decay can be explained as an interaction among current
distribution in the cable and persistent current filament magnetization. Any change of
current distribution in a cable is associated with a periodic variation of the local
magnetic field (mostly the self-field) along the cable. In turn any field variation
causes a change in the magnetization state of the superconducting filaments. Because
of the non-linear response of the superconductor magnetization to changes in the
external field, the net change of the magnetization of the filaments is always in the
direction of a decreasing absolute value of the average cable magnetization. This
indeed explains the systematic drift of the allowed multipoles in the direction of
decreasing magnetization contribution. The diffusion of the current profile in the
cable has very long time constants which are coherent with the characteristic times
observed on the field drift (hundreds of seconds and above). Finally, the internal field
changes necessary to explain the drift of the harmonics observed is small, in the range
of 10 mT. Such a field change can be generated in a typical Rutherford cable for
accelerators by a current redistribution among strands of some 10 A, a value which
also coherent with the expected current imbalances, e.g. generated by the localised
field variations discussed in the previous section.
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