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A Two-Fluid Code for the Thermohydraulic Transient
Analysis of CICC Superconducting Magnets

R. Zanino,' S. De Palo,! and L. Bottura?

We present here a finite element computer model (Mithrandir) for the transient thermohydraulics
of compressible helium in a Cable-In-Conduit Conductor (CICC) with central cooling hole, as
presently envisaged for superconducting magnets of the International Thermonuclear Experimental
Reactor (ITER). In the model the He in the hole and that in the cable bundle are treated as separate
fluids, each characterized by its own flow and thermodynamic properties, coupled by exchanges
of mass, momentum and energy. Results for the simulation of a quench both with and without a
wall delimiting the central cooling hole are discussed. Time and space convergence of the code

are demonstrated numerically.
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1. INTRODUCTION

Most of the existing computer codes for the anal-
ysis of a quench transient in a superconducting magnet
treat the He coolant as a single fluid. This is obviously
justified whenever the geometry of the cooling channel
is such that one can reasonably expect little inhomoge-
neities in any cross section. On the other hand, the pres-
ent design of CICC for the ITER magnets includes a
central cooling hole to the purpose of increasing the flow
at given pressure head. Clearly, assuming in this situa-
tion quasihomogeneous properties for all the He, both in
the cable bundle surrounding the hole and in the hole,
will become less and less correct, the more the radial
mixing between the two regions is impeded.

Recently®" a first step towards a more general treat-
ment of this situation was taken, including in the code
Gandalf the possibility of different He flow velocities in
the cable bundle and in the hole, though still retaining
same thermodynamic state for both (i.e., same pressure
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and temperature) at any given section. If He crossflow
is not fully impeded, which would probably be unrea-
sonable from an engineering point of view, the question
of how good the assumption of same thermodynamic
state is, reflects to the question of which timescale one
wants to model. Pressure equalization will happen on a
very fast (sound) time scale, much faster that the typical
(order of 1 second) timescale of the quench; however,
temperature equalization will require a significantly
longer time (order of the reciprocal of the transverse
Mach number of the flow); therefore, we felt the need
to develop a model which would be both more complete
from the physics point of view, and efficient on all time
scales of interest.

Here we present a 1-D, two-fluid model, Mithran-
dir, where the He in the cable bundle and that in the
hole can have different velocities and different thermo-
dynamic state. The fluids are coupled between them-
selves by mass, momentum and energy exchange, and
with the conductor strands and jacket by convective en-
ergy transport. The model is described in Sec. 2, includ-
ing choice of dependent thermodynamic variables,
equations and boundary conditions; the numerical
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method for space and time discretization of the model
is discussed in Sec. 3; to assess the validity of the code
a rather detailed set of computational tests and conver-
gence studies has been performed, and its results are
summarized in Sec. 4. The code has in parallel been
validated against experimental data, as reported in.» A
model similar to that implemented in Mithrandir, al-
though based on different state variables, is also being
used elsewhere.®

2. DESCRIPTION OF THE MODEL,

We consider the transient flow of low temperature
supercritical He in a CICC, under the action of heating
sources in the strands and in the jacket,

Observing that the typical transversal size of the
conductor is several orders of magnitude smaller than its
length, it is customary to straighten it out (which is jus-
tified by the relatively large, O(1m) curvature radii) and
assume a one-dimensional treatment in the x-coordinate
along its length to be sufficient. The equations are there-
fore derived from the 3-D case by appropriate averaging
over (portions of) the cross section.

The second important approximation made in the
model is to assume essentially ideal flow conditions,
with dissipation concentrated in a Fanning factor vis-
cosity, but without any second order derivatives in x:
from the (restrictive) point of view of a single fluid the
model therefore resembles that of the Euler system of
equations, and this has important implications on the nu-
merical treatment (see below).

The model presented here heavily relies, nomen
omen, on that of” but extends it in two major respects:
(1) three equations for each fluid (He in the cable bundle
and He in the hole) are solved simultaneously, for a total
of 6 fluid equations (then further coupled to heat con-
duction in the strands and in the Jacket), as opposite to®
where 4 fluid equations were solved (only the flow ve-
locities were allowed to be different); (2) mass, momen-
tum and energy exchanges between the two fluids need
be modeled by appropriate coupling terms. The inter-
ested reader will find in® details of the model not di-
rectly referring to the points Jjust mentioned.

2.1. Choice of Thermodynamic State Variables for
the He

The choice of thermodynamic variables for the de-
scription of the He state is by no means unique or
straightforward, and different answers to this question
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can be found in the literature. We believe that this choice
can be influenced by three principal facts, among others:
(1) conservative vs. nonconservative form; (2) behavior
of the coefficients in the fluid equations near the critical
point and across the transposed critical line; (3) need for
implicit treatment of certain driving terms related to the
stiffness of the system of equations. We are now going
to briefly address each of these points in the following.

As to the first point it is well known that the ad-
vantages of a conservative form appear most clearly in
the presence of flow discontinuities, e.g., shocks. To rig-
orously exclude this occurrence will need a more careful
investigation in the future; however, for the present, very
low Mach numbers M are expected in our problem (a
posteriori we found max(M) = a few % in some of the
cases presented here), i.e., we should be fairly far from
the possible insurgence of steady discontinuities in the
flow; furthermore, viscosity, and heat conduction in the
cables, should provide some broadening mechanism for
possible unsteady discontinuities, at least for the bundle
He. On the other hand, using the mass density p and the
total energy density e as variables could force us to treat
explicitely/iteratively strong driving terms, e.g., the pres-
sure gradients in the momentum equations, or else go
through delicate interpolations in the tables of thermo-
dynamic properties. Since we consider implicit time
marching as a must for this problem (see below) we will
therefore use equations in non conservative form.

As to the second point one can observe that there
are two major possibilities as nonconservative state var-
iable couples, namely: (a) pressure p and specific en-
thalpy w, or (b) p and temperature 7. In Ref. 4, it is
shown that for steady single fluid flow the coefficients
in the equation for d7/dx suffer strong variations near
the critical point and across the displaced critical line,
therefore this feature could in principle lead to difficul-
ties also in the numerical solution of our problem if
choice b was taken.

As to the third point, on the other hand, if one uses
choice « (or, for that matter, conservative variables) the
strong coupling terms due to heat convection between
the strands and the helium, which are proportional to 7,
would need to be treated explicitely/iteratively. The time
scale of this term can be much faster than the time scale
of the quench, i.e., the problem is stiff; this explicit treat-
ment must then be avoided, because it would need ex-
tremely low time steps Az, and therefore make the
simulation of the whole transient very expensive; fur-
thermore, the coefficients in our model seem not to un-
dergo dramatic changes, because we are and typically
stay fairly far from the critical point. For the above rea-
sons we will use p and T as state variables for the he-
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lium; to establish the actual importance in the case at
hand of the discussion in® particularly on the issues of
linearization (see below) and stability, will need a more
thorough study which is beyond the scope of this paper.

2.2. Equations and Boundary Conditions

The equations in our model describe the nonlinear
time evolution of the vector of unknowns

u = V8 p? T% V¥, p*, TV, T, T,)"

under the action of external and/or Joule heat sources.

2.2.1. Helium Fluids

The set of equations in v, p and T variables has
been derived for each of the two fluids from the general
conservative form of mass balance (with a mass source
A,), momentum balance along x (with a momentum
source A,)) and total energy balance (with an energy
source A,). With straightforward algebra we obtain

v v 1 1

+- = =—[A, —vA] €]
a " ax p ox p[ ’

9,
6_p+ ZQ+v—p~—ta
ot ox 0x

at 0 dx x pc,

2

[~ vA, = w =2~ o) A] O

where, in particular, Eq. (2) is derived ‘‘from’ the mass
balance. Here v is the fluid velocity along x, ¢ is the
sound speed, ¢ = (p/T)(37/dp), is the Gruneisen param-
eter (see Ref. 4), and ¢, is the specific heat at constant
volume. Once p and T are known, then p, 6, and the
parameters ¢, ¢, c, can be obtained from tables.®) (Each
equation (1-3) is used twice: once for the He in the cable
bundle, once for the He in the hole, with the respective
values of the parameters).

Notice that in Eq. (1) no gravity force is present
because it is negligible for the limited elevation differ-
ences in the magnets. Also, viscosity effects are concen-
trated in a friction factor, see Eq. (3a), as customary in
one-dimensional internal flow, and heat conduction is
assumed in Eqgs. (2-3) to be negligible due to the ex-
tremely low heat conductivity of He (see Sec. 4.1).
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Table I. Data Used for the Simulations

Parameter Value
Conductor length 10 [m]
Helium cross section in hole 19.63 [mm2]
Helium cross section in bundle 88.85 [mm2]
Nb,Sn cross section 47.5 [mm?2]
Copper cross section 66.5 [mm?2]
Steel cross section 66.67 [mm?2]
Insulation cross section 0.0 [mm2]
Conductor Strain —0.0025
Copper RRR 100
Conductor-Helium bundle wetted perimeter 371.1 [mm]
Jacket-Helium bundle wetted perimeter 54.0 [mm)]
Conductur-Jacket wetted perimeter 1.0 [mm)]
Hydraulic diameter of hole 5.0 [mm]
Hydraulic diameter of bundle 0.86 [mm]
Operating current (constant) 8.0 [kA]
Magnetic field (constant) 11.0 [T]
Energy deposited into strands 10.0 [k)/m]
Heater length 0.2 [m]
Pulse duration 1.0 [s]
Helium inlet temperature 5.0 [K]
Helium inlet pressure 0.6 [MPa]
Helium outlet pressure 0.6 [MPa]

As to the sources, A, comes wholly from the mix-
ing between the two fluids and is discussed, together
with the other terms with the same origin, in the next
section. For the momentum source we have

A, = A" — F-p with F=2f %)-l Ba)
where f'is the Reynolds number dependent friction factor
and D is the hydraulic diameter. For the heat source we
have to explicitely distinguish between He in the cable
bundle (index B), which directly exchanges energy by
convection with strands and jacket A5, and He in the
hole (index H), which in our model exchanges energy
only with the He in the bundle; correspondingly we have

A= AS— B h, (T? — TH)/4, + Arixs
with

Ajes = [BS‘I hsr (TSr - TB)
+ Bk th (T./k - TB)]/AB [3b]

whereas
Af = theq (TB - TW)/AH + Aremx,H (30)

Here P are the wetted perimeters, & the corresponding
convective heat transfer coefficients (see Ref. 1 for de-
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Fig. 1a. Temperatures [K] at x = 5 m vs. time [s]: strands (solid line), cable bundle He (+), jacket/conduit (*), hole He (©).
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Fig. 1b. He pressures [Pa] vs. time [s):

tails), A, is the cross-sectional area of the He channel in
the cable bundle. Indices St and Jk refer to the strands
and to the conduit/jacket respectively.

Boundary conditions for each triplet of equations
can be imposed subject to the restrictions from charac-
teristics theory: assuming subsonic flow everywhere in
the channel, at an inlet section two characteristics (v and

05 06 07 08 09 |
cable bundle (solid line), hole (0).

v + ¢) will be ingoing, therefore two boundary condi-
tions must be imposed; at an outlet section only one
characteristic (v — ¢) will be ingoing, therefore one
boundary condition is needed. We typically use: given
p and T at an inlet, given p at an outlet. More general

boundary conditions, e.g., including flow, could be con-
sidered.
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Fig. 1c. He densities [kg/m?®] vs. time [s]: cable bundle (solid line), hole (0).

2.2.2. Modeling of Mixing Terms

We express each of the mass sources in Egs. (1-3)
as follows

A, = % (4a)

R

where € is the pipe length,
#=pv, 4, T'5=-T% (4b)

Here the perpendicular flow velocity is deduced by treat-
ing the bundle/hole interface as a concentrated loss in a
hydraulic circuit, with loss coefficient «

A2t = 2 p
v PR g )

The ““tilde’” variables, here as in the following, refer to
bundle values if », > 0, to hole values viceversa. The
perpendicular cross section A is to be given by the user,
but will actually have to come together with x from a
detailed model of the interface (see, e.g., Ref. 6).

The momentum exchange between He in the hole
and He in the bundle is given by

T
At (5a)
[7=\T4p T#=—T¥ (5b)

l.e., we assumed a purely convective exchange of mo-
mentum. The parameter A, attempts to qualitatively take
into account the structure of the material interface: if this
is such that it absorbs most of the momentum, as in the
case of a wall with small holes, then A, =~ 0; in the
opposite case of, say, a spiral with long pitch, A, ~ 1.

For the heat/enthalpy exchange between the two
flows we have

Ff,’[W + (J\_v§)3,f2] i PHBhHB (TB - TH)

Amix,H =
: A, A, (6a)
Arenix,B - F'Z W + (\9)*/2] + Prghyw (T — Ty) (6b)
€4, A,

i.e., we consider a more general situation, including both
convective (depending on I',) and conductive (depend-
ing on the interface wetted perimeter P, and heat trans-
fer coefficient 4,,, see Ref. 6) contributions.

2.2.3. Conduit and Strands

Both conduit and strands can be approximately
modeled with the same kind of one-dimensional heat
conduction equation
3 a7,

(K= =
o &%) %)
= Ohei T Orostes T G — @i i= 8t Jk

A.p,C, a—Ti—A
ipiiat i
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Fig. 2a. Time evolution of the cable bundle He pressure profiles,

over the first 0.025s.
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Fig. 2¢. Time evolution of the cable bundle He flow velocity [m/s]
profiles, over the first 1s.

where 4 is the total cross sectional area, C the mass
averaged specific heat, K the area averaged heat con-
ductivity. As to the sources at the righthand side: Q,,
+ Open = AS Ay Joule and external (e.g., friction, nu-
clear, etc.) heat sources have been included; finally, Q,,
represents the direct (contact) internal heat exchange be-
tween strands and conduit.

Typically, adiabatic conditions at the pipe ends are
assumed for both conduit and strands.

3. NUMERICAL METHOD

A finite element Galerkin method with linear (P))
test and trial functions is used for space discretization of
Egs. (1-3,7), augmented by stabilizing numerical diffu-
sion terms. The space integrals in the elemental matrix
are computed numerically using the one point Gauss
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Fig. 2b. Time evolution of the hole He pressure profiles, over the
first 1s.
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Fig. 2d. Time evolution of the hole He flow velocity profiles, over
the first 1s.

(midpoint) rule. The mesh is adapted in time according
to the needs of resolution of strong gradients which ap-
pear at the (moving) normal front during the transient.

The resulting set of nonlinear ODEs is discretized
in time with finite differences, with a general approach
including the whole range between explicit and fully im-
plicit method; from this we get a nonlinear system of
algebraic equations which is first linearized and then
solved at each time step by a standard direct algorithm
for banded matrices. Also the time step can be varied in
time, according to the particular time scale which is be-
ing followed at that instant of the transient (see below
and Ref. 1 for details).

3.1. Space Discretization on an Adaptive Mesh

The Galerkin method (see, e.g., Ref, 7) is standard
and we will not discuss it here. For elliptic problems it
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Fig. 3. Space/time temperature profiles: hole He (a), cable bundle He (b), jacket/conduit (c), strands (d).

provides an optimal discretization, but if the problem
tends to become hyperbolic (e.g., where convection
dominates over conduction/diffusion) then spatial un-
physical oscillations arise whenever one is not resolving
with a sufficiently fine mesh internal/boundary layers.
Since this behavior is obviously undesired one can try
to treat this situation by at least two different means: (1)
locally refine the mesh wherever strong gradients appear;
(2) include some kind of numerical dissipation to make
the problem less convection dominated (see Sec. 3.2).

For the application at hand the advantages of an
adaptive mesh have been first recognized in,® and de-
tails of the method used in Mithrandir can be found in.®
Instead of searching for large gradients in the solution
we use as ‘‘error’’ indicator the localization of the nor-
mal front, near which significant spatial variations are
expected to take place. Starting from an initial back-
ground mesh which is never changed we add and/or sub-
tract nodes, refining the mesh according to a Gaussian
density distribution centred at the front, and removing
them as soon as the front has moved sufficiently further
away. A maximum (typically the initial, fixed one) and

a minimum size of the elements can be prescribed by
the user.

3.2. Stabilization by Means of Local Artificial
Diffusion

As a further, parallel means of avoiding oscillations
in the solution we have added to the ith right-hand side
in Eqs. (1-3) a numerical diffusion term

0 ou,;
— [g. — = 1,..,6 8
ax [e; ax] ' o (8a)

with local diffusion coefficient

g = o |V|2Ax (8b)

The choice a; = 1 amounts to using the prescription of
the Streamline-Upwind Petrov-Galerkin  (SUPG)
scheme,™” although weighting with the correspondingly
modified test function the convective terms only. Pure
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Fig. 5. Length of normal conducting region [m] vs. time.

Galerkin weighting of the time dependent and source
terms, as we do here, has been shown to lead in some
cases to significant errors;” however, also these errors
obviously vanish with Ax (see Eq. 8b), and will become
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less important if a sufficiently fine mesh is used where
large gradients in the sources and or large variations in
time appear. Here we shall check numerically in some
cases that the solutions obtained with &, = 1 are not too
far from those obtained with the pure Galerkin method
(i.e., with a;, = 0); the need for, and implementation of
a full SUPG for the problem at hand will be considered
elsewhere.

3.3. Time Discretization with Adaptive Time Step

Once the set of Eqs. (1-3,7) has been discretized
in space over a mesh with, say, N nodes, we are left
with a set of nonlinear ODEs

du
7 L =4A U U=y, vy, (9)

where M is the so called mass matrix (see Refs. 1 and
7) and U is the discretized vector of unknowns.

The @-method is then used to advance U forward
in time from ¢ (index n) to ¢ + At (index n + 1) and
Eq. (9) becomes

Un+l _ Un
M——==(1 - oL

At
+OLU)  0<6<1  (10)

If M was lumped (diagonalized) then & = 0, 0.5, 1
would lead to the explicit, Crank-Nicolson and fully im-
plicit schemes, respectively.

The time step Af can be varied during the transient.
This is a simple matter for a two-level time stepping
algorithm, and is one of the reasons for the choice of
the d-implicit method. Essentially, two thresholds & and
& > g for the absolute value of the maximum (over all
unknowns and over the whole pipe) relative variation £
of a U component are defined by the user, If £ < g then
At is increased by a factor My = 15 if g < £ < g then
At is unchanged; finally, if £ > & then At is reduced by
a factor u, > 1 (both w, and 1, are chosen by the user).
No step is thus ever rejected. This ““explicit’” prediction
of the time step based on the result of the previous step
obviously is a good choice for small steps only; how-
ever, accuracy constraints would force us to use not too
large steps anyway, in order to follow the advancing
normal front,

3.4. Linearization

Unless 6 = 0, Eq. (10) is a set of nonlinear equa-
tions because of the nonlinearity in the evolution oper-

CICC Superconducting Magnets

100 ¢ e

101 = E
&, 2 ]
[T} - .

102 3 o

3 Lavaai ba Le sy
1010‘1 101 100
dx

100 THG!&!H(“.B[

5
g, - E
o = -

102k g

3 i i iis

wm—'3 10+t 100

dx

102 PHc;hugl
& 102} E

'Oiﬂm 10! 100

dx

100

10
8, E
[ r

102}

Pz e 100
dx

33

100

10-1

10-2

10

10t
100
2 107!

102

eps

Ll

10-2 1'1.}le 100

10-3 A4 4 haas

dx

100 D He (bundle)

10!

& 1072

UL L

10-3

—
(=

"
—

Sk
—_
(=3
=3

Fig. 6. Relative errors for several quantities at x = 5 m vs. Ax [m]. Case § = o, = 1, At = 10,

ator L. Several possible ways would be available to lin-
earize Eq. (10), e.g., from the family of Newton or
quasi-Newton methods. For the sake of simplicity we
choose here to freeze 4 at the previous time step and
linearize Eq. (10) according to

L(Un+1) = A(Un+1)Un+1 e A(Un)Un+1 (loa)

A detailed study of the effects of this choice and of the
tradeoffs against other possible linearizations is currently
under way.

4. RESULTS OF COMPUTATIONAL TESTS

We have performed a set of tests of Mithrandir
(some of the parameters used are shown in Table I).
Both a typical behavior with and without mixing be-
tween the two fluids, and space/time convergence of the
codes will be discussed. A CICC with / = 10m length
was chosen, i.e., much shorter than typical; this was due
to the fact that the reference (‘‘exact’”) solution used for
the convergence studies requires a fixed mesh with Ax
= 1 mm, and a longer conductor would have needed too
many elements from a CPU viewpoint; still, some im-
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portant features as, e.g., normal front propagation speed
(see Fig. 5), are similar to those encountered in a more
realistic case. The strands were heated uniformly over a
length of 0.2 m centred at x = 5 m, for a duration of
1s, with a resulting power Q.ee = 2kW. To this O rotest
is added, with an (x, £) dependence as given by the local
strand resistivity to an imposed current of 8kA.

4.1. Short-Term Transient with Segregated Hole
(Separate Fluids)

The first set of simulations, and all of the conver-
gence results, refer to the case of a central cooling hole

delimited by an impermeable wall. Since in this situation
all mixing terms in Egs. (1-3) vanish, one-fluid models
would hardly be applicable here. A transient of 1s du-
ration was considered and some of the resulting space
and time profiles are shown in Figs. 1-5.

We notice that at the center of the heating region
all temperatures increase (Fig. 1a) and vice-versa both
He fluids expand (Fig. 1c) monotonically in time due to
the heating, hole quantities varying very little due to the
weak coupling of the He there with the rest of the CICC.
The evolution of the central pressure of the bundle He
(Fig. 1b), on the contrary, has the character of a damped
oscillator. After O(1s)p” (v = 5m) is steady and slightly
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Fig. 8. Several quantities at x = 5 m vs. Ax [m]: At = 10~*s (solid lines), adaptive At (dashed lines). Case 6 = o, = 1.

above the initial (and boundary) value. Numerical ex-
periments performed parametrically changing the hy-
draulic diameter D in the range between 102 and 10-3
times the nominal value have shown that the oscillation
is not of numerical nature but is related to the balance
between friction and inertia: at D ~ 0.1 times the nom-
inal value, i.c., with stronger friction, the oscillations
disappear. A simplified analysis of this problem shows
that the damping mechanism is nonlinear, and related to
the compression 31#/dx at the center.

The initial evolution (first 0.025 seconds) of the
P%(x) profiles (Fig. 2a) shows the pressure front(s) prop-
agating at the sound speed towards the conductor end(s),

a behavior previously observed in;® the profiles of other
He quantities (not shown) evolve similarly on that time
scale. On the ‘‘longer’”, Is time scale pressures and
flows (Figs. 2b-d) evolve coupled, with +* and 1 reach-
ing values O(1m/s) over most of the conduit.
Extremely steep temperature (Figs. 3a-d) and den-
sity (Figs. 4a,b) profiles develop in time, emphasizing
the need for adaptive meshing. The ‘‘Mole Antonelli-
ana’*? kind of shape results from the superposition of the
imposed Q.,,, with the varying Q,,,..s, which advances

>The 168m tall symbol of Torino, built 1863 from a design of A.
Antonelli.
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in x with the normal front. The dip in 77 (Fig. 3a) has
to do with the fact that at x = 5m the flow is stagnant
due to symmetry, so that h., drops there to very low
values, compromising the heat exchange between bundle
and hole. We have also estimated that, notwithstanding
the strong curvature of the profile there, heat conduction
if included would contribute 0(0.01%) to the heat bal-
ance, due to the extremely low (0(0.01W/m K))heat
conductivity of He at that pressure and temperature.

All of the previous results have been obtained with
0 = a; = 1. The possibility of using a pure Galerkin (e,
= 0) will be discussed in 4.1.3. From the point of view
of the choice of 8 we also tried 9 = 0.5, because in a
scalar linear convection problem with numerical diffu-
sion added as in Eqgs. (8a,b) one can show that this
would lead to quadratic convergence in time and incon-
ditional stability; however, almost no damping is pro-
vided by such a scheme, particularly at very low (e.g.,
0.01) or very high (e.g., 100) Courant numbers, whereas
6 = 1 damps the high frequencies, the larger the Courant
number is. The results of our runs (not shown) were
qualitatively consistent with this picture, and it typically
was impossible to avoid unphysical space and time os-
cillations in the solution, unless a smaller At was used
than in the @ = 1 case.

4.1.1. Space Convergence

The space convergence of the code has been inves-
tigated by running it with different Ax values in the

—o— dtadpt (le—5 to3e—3)

10*s (upper line), adaptive At (lower line).

range 0.01/Im on a fixed (nonadaptive) mesh, using
= @ = | and fixed (nonadaptive) Ar = 10~* s. The
relative error plots of Fig. 6 refer to computed values at
¥ = 5mand ¢ = 1s compared with the values obtained
using Ax = 0.001 m, which is used as reference (*‘ex-
act’”) solution. In Fig, 6, as well as in the following Figs.
7, 8, 10, a plot for each of the dependent variables of
Egs. (1-3,7) is shown, for the sake of completeness, It
can be seen from the plots of Fig. 6 that the Galerkin
scheme with O(Ax) numerical diffusion is more or less
linearly convergent in space, as expected, obviously pro-
vided Ax is sufficiently small.

4.1.2. Time Convergence

The time convergence of the code has been inves-
tigated by running it with different (nonadaptive) At val-
ues in the range 10-'/10-4 s, again using 0 = @, = 1,
and fixed (nonadaptive) Ax = 0.01 m. The relative error
plots of Fig. 7 again refer to computed values at x = 5
m and ¢ = Is compared with the values obtained using
At = 10-%s, which is used as reference (*‘exact™) so-
lution. It can be seen from the plots that the fully implicit
scheme is more or less linearly convergent in time, as
expected, provided At is sufficiently small.

4.1.3. Effect of Adaptivity and Numerical Diffusion

We have investigated the effect of using an adap-
tive Az. In Fig. 8 the convergence in space of the code
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is demonstrated using both a fixed Af¢ (solid lines, same
data of Fig. 6 although with a different representation)
and an adaptive Ar (dashed lines). One sees that if Ax
is sufficiently small the two choices lead to the same
results; however (Fig. 9) the CPU time required for the
same accuracy goes typically down by a factor of about
30, when using an adaptive A¢. (In these adaptive cases
one starts with At = 10~%s and reaches a maximum A¢
=~ 3 X 1073s). Notice also that, due to the use of a band
matrix solver, the CPU cost increases only linearly with
the number of elements.

We consider now the effect of using an adaptive
Ax: it turns out that the accuracy one can obtain is more

or less determined by the maximum Ax (of the fixed
mesh). This is probably due to the fact that only the
normal fronts are being followed by the mesh; large gra-
dients near the pipe central section due to localized ex-
ternal heating, or related to other (non normal) propa-
gating fronts, could not be resolved with the present
adaptive algorithm, unless the background mesh is suf-
ficiently fine. Further work on suitable error indicators
will be devoted to this subject in the near future.

A limited amount of runs has been performed using
the pure Galerkin scheme (o, = 0) with 8 = 1, and space
convergence for this case is shown in Fig. 10. The major
indications coming from the numerical experiments
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seem to confirm what would be expected® in similar but
simpler cases (e.g., linear scalar convection): (1) the
code converges more or less quadratically in space pro-
vided Ax is sufficiently small; (2) there is a (limited)
range of Ax (e.g., 0.1 m) where pure Galerkin does not
converge, whereas Galerkin plus numerical diffusion
does, with errors of the order of a few % with respect

to the best pure Galerkin solution (compare Fig. 10 with
Fig. 8).

4.2. Long-Term Transient with Mixing Fluids

We have started a detailed study with Mithrandir
of the important case when the He in the bundle and
that in the hole can mix together through suitable per-
forations in the interface between cables and hole. A set
of results for a long (5s) transient, representative of what
has been obtained until now, is shown in Figs. 11-14.
Here we assumed that the passage for the mixing extends
uniformly to about 3% of the interface area, i.e., 4,/(ID¥)
~0.03, where D" is the hydraulic diameter of the hole.
Much larger fractions can lead to convergence difficul-
ties which are currently under investigation. In order to
better identify the effects of the mixing we also assumed
h., = 0 for the present run.

The time evolution of the temperatures at x = Sm
(Fig. 11a) can be compared for the first second with that
in Fig. la: it is clear that the coupling between 7% and
T is now fairly strong, so that 7% is being pulled up

leading to differences O(30 K) after ls, ie., much
smaller that in the case of a segregated hole. After |s
the external heating is turned off, which explains the
change in slope of the curves.

The pressures at x = 5 m (Fig. 1 1b) are very tightly
coupled, pressure equilibration occurring on the trans-
verse sound time scale (O(1ms) in the present case). For
the same input power as in the case of Sec. 4.1 we find
now a lower peak, because part of the energy deposited
in the bundle He can be relieved to the hole. The central
pressure evolution again resembles that of a damped os-
cillator.

The time evolution of the 77 profile (Fig. 12a)
shows a new feature compared to the case without per-
forations: a second front appears, faster than the normal
one (see Fig. 14), whereas in 77 (Fig. 12b) only the
normal one is present; this is due to the fact that (not
shown) at, say, + = 25, # ~ 02 — 0.4m/s < prmont
whereas v ~ 1.0 — 2.0m/s > VRONT for x > 6m. In
the case of Sec. 4.1 no convective speed was larger than
VRN and the second front did not appear. It must also
be noticed that (not shown) the He in the hole goes
through the pseudo-critical line at this second front. This
transition produces an overpressure responsible for the
mixing backflow from hole to bundle (see Fig. 13),
whereas the mixing flow from bundle to hole is localized
near the normal front.

We finally remark that the normal front speed (see
Fig. 14) is larger than +# (probably because of heat con-
duction in the cables leading to a hybrid Peclet number

100.
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Fig. 12. Space/time temperature profiles: hole He (a), cable bundle
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O(1)), but is smaller than in the case without mixing
(Fig. 5).

5. CONCLUSION AND PERSPECTIVE

A new two-fluid code, Mithrandir, has been devel-
oped for the simulation of thermohydraulic transients in
superconducting magnets; the code has been applied to
a CICC with central cooling hole and cross section par-
ameters similar to that proposed for ITER.

A study based on numerical experiments has been
performed for the case without mixing between the two
fluids, and for a reduced conductor length / = 10m. It
shows that the code converges both in space and time
as expected from the analysis of simpler model prob-
lems. From the numerical point of view, Petrov-Galerkin
stabilization, mesh adaptation and linearization of the
equations are currently being investigated to further in-
crease the robustness of the code.

‘ A first comparison of the results obtained with and
without mixing has been presented. The mixing model
is presently rather rudimentary, so that the corresponding
bghavior predicted by the code is to be taken as indic-
ative only. In the case presented here the code converges
to reasonable time and space profiles, and interesting
new features appear in the solution with mixing, com-
pared to the case of two separate fluids.

Compatibly with the computer resources available
we aim to the full scale testing of the mixing model on
realistic conductor lengths; this should enable a mean-
ingful simulation/validation of the QUELL experiments
to be performed in the near future.
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Investigation on Effects of Conductor Concepts on 3D
Quench Propagation in Superconducting Coils Using the

Code System MAGS!

R. Meyder?

Quench propagation is analysed for two different conductor types, foreseen for a Tokamak and a
Stellarator type fusion machine, respectively. For the analysis the code system MAGS is used. In
the paper MAGS is presented briefly. The analysis considers quench in a small layer wound coil
with separate coolant flow in the two layers modelled. Quench is initiated in the first layer and
propagates in this coolant channel as well as to the second coolant channel, via heat conduction.
Due to the different design, very different front velocities and peak pressures were determined.

KEY WORDS: Superconducting coils; quench analysis; forced flow cooled.

1. INTRODUCTION

The determination of the propagation velocity of
normal conducting zones in a superconducting coil
(quench) is important as well for the design as for safety
considerations. While for aspects of stable operation the
margin to quench should be large, a normal conducting
zone in a too stable conductor may be not detected in
time in order to take mitigating actions, especially with
a local quench. This question has led to the development
of models to calculate the quench behaviour of super-
conductors, especially for forced flow Helium cooled ca-
ble in conduit conductors.

The different aspects mentioned have also lead to
different tools for this analysis. Some codes, like SAR-
UMAN® or GANDALF® are codes prepared for design
analyses, while others, e.g., MAGS,? being presented in
this papet, has been developed to model complex coil
accidents including quench. To give some idea on the

! Presented at the Workshop on Computation of Thermo-Hydraulic
Transients in Superconductors, Lausanne, June 6-8, 1995.

2 Institut fiir Reaktorsichetheit, Forschungszentrum Karlsrube, Technik
und Umwelt, Postfach 3640, D-76021 Karlsruhe.
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tools available in MAGS, Table I gives a short overview
of the present status.

In this paper two different coil designs, ie., an
ITER CS typical and a Wendelstein 7-X typical design,
are analysed in their quench propagation behaviour. It is
to be stated that each coil design has reasons why it
looks as it is, others than its quench propagation behav-
iour. Therefore this analysis does not intend to make a
ranking of the two designs, it is rather a simple com-
parison of their behaviour.

The characteristic data of the two designs are given
in the Table II.

For the analysis the data for the Wendelstein con-
ductor are slightly changed, the magnet field is set to 5
T, the coolant temperature is set to 4.0 K and the mass
flux is 0.8 g/s.

A small coil is considered consisting of 16 turns in
two layers. The coolant flow is separate for each layer.
Total length of the coil is 100 m. In the centre of layer
1, i.e., in the last circumferential mesh element of turn
4 (Q.I.1) and in the first circumferential mesh element
of turn 5 (Q.1.2), a propagating quench is initiated. Cur-
rent and magnet field are constant with time and space.
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