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Abstract

In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The
aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The
model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency.
We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally
demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand

cable. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The transient behaviour of superconducting cables is
determined by intrinsically coupled thermal, hydraulic
and electric effects. This interaction is observed in ded-
icated experiments as well as in operating magnets.
Examples of coupling are the helium-induced flow that
affects stability and quench propagation in force-flow
cooled cables [1,2] and the limitation found on the
quench current during ramps in multi-strand cables that
is thought to be caused by premature current sharing
due to large current imbalances among strands [3,4].
Not only magnet quench, but also field quality in ac-
celerator magnets is influenced by the current distribu-
tion in the superconducting cables through interaction
with the filament magnetization [5,6]. Finally, the bal-
ance of thermal and electrical strand contacts has been
found to affect greatly the stability of a cable [7,8].

This abridged list of examples shows that it is of
paramount importance to understand and possibly

* CHATS-Y2K: Workshop on Computation of Thermo-hydraulic
Transients in Superconductors, 6-9 September 2000, Frascati, Italy.
*Corresponding author. Tel.: +41-22-767-3729; fax: +41-22-767-
6230.
E-mail address: luca.bottura@cern.ch (L. Bottura).

control the coupling between thermal, hydraulic and
electric phenomena in superconducting cables. In spite
of this need, as of today the quantitative impact of the
coupled phenomena involving a non-uniform current
distribution is not well assessed. The reason is that the
coupling of phenomena makes the analytical treatment
of the transient response exceedingly difficult. This is in
particular true in kA-class, low-Tc superconducting ca-
bles, where the coupling among the thermal, hydraulic
and electric phenomena takes place on time scales rele-
vant for stability and operation [9]. As a consequence,
many discussions on parameters affecting the phenom-
ena involved, e.g. interstrand resistance, lack a sound
basis. Experimental results are then frequently open to
widely different and sometimes discordant interpreta-
tions.

We believe that the above issues are, at least in part,
related to the lack of proper simulation tools that could
be used to disentangle the phenomena. In particular
while thermal and hydraulic phenomena have been ad-
dressed in a consistent manner for several years, the
attempts to deal consistently with current distribution in
a general model for a superconducting cable have been
few and scattered [7,8,10]. In [9] we have advocated that
a general tool, providing consistent treatment of ther-
mal, hydraulic and electric transients is within reach
using state-of-the-art numerical solvers for partial
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differential equations (PDE). In this paper we describe
our approach to achieving this objective.

Our approach to the problem is to divide the cable in
a set of domains. We then define the differential equa-
tions that govern the evolution of the state variables for
each domain. The first domain is the set of the N thermal
components where the temperature field is described by
a set of diffusion equations. The second domain is the set
of H cooling channels, the hydraulic components, where
flow pressure, velocity and temperature are described by
mass, momentum and energy conservation balances.
Finally, the third domain is the set of E electric, current-
carrying components where the current behaviour is
described by a set of semi-continuum circuital equa-
tions. The three domains are coupled explicitly through
relations among the state variables, or implicitly
through material properties that depend on the value of
the state variables of other domains.

To derive the system of PDE, we make the funda-
mental assumption that the components in the cable
have a large ratio of length to cross-sectional dimension,
so that the equations can be written in 1-D, neglecting
the transverse dimensions in the cable cross-section.
Taking several coupled components in parallel we finally
obtain a 1-D model that is topologically equivalent to
the 3-D situation in the cable.

In the paper we will present the equations forming the
system of PDE, and where necessary we will detail their
derivation. We will then put the system of equations in a
form convenient for numerical treatment, and broadly
describe a solution strategy. The flexibility of the model
is demonstrated by an application example involving the
interaction among the three coupled fields.

2. Heat conduction model

The N thermal components of a superconducting ca-
ble can be of varied nature: superconducting strands,
structural components, electrical barriers, insulators. All
these materials can generate Joule heat, transport heat
by conduction, and exchange heat at their mutual in-
terfaces and at the interface with a cooling medium.
Assuming that the transverse dimension of each com-
ponent is small with respect to its length we can write a
general 1-D heat transport equation for each component
i

or; 0 oT;
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where A; is the cross-section of the component, in
principle a function of position, p; its density, C; the

specific heat, k; the thermal conductivity and 7; is the
temperature. We allow each component to have an in-
ternal structure, assuming that the temperature within
the cross-section of the component is constant. This is
for instance the case of a superconducting strand
composed of superconducting filaments embedded in a
stabilizer matrix. For each component the total cross-
section is obtained as sum of the partial cross-sections of
the constituents. The homogenised density and thermal
conductivity are obtained using an area weighting, and
the homogenised specific heat using a weighting based
on the mass of the constituents.

The sources in Eq. (1) are the external heating term ¢/,
the Joule heat ¢, if the component is carrying a
current, and the heat exchanged with other thermal
components or coolants modeled by the last two sum-
mations in Eq. (1). In the case of heat exchange among
thermal components we have introduced the thermal
resistance per unit length H;; between components i and j
(this last at temperature 7;). The heat exchanged with H
different coolant channels depends on the wetted pe-
rimeter p; and heat transfer coefficient A4; with the
coolant flowing in channel / at temperature 7,. We will
discuss the details of the heat transfer coefficient when
dealing with the model for the hydraulic components.

2.1. Boundary conditions

Boundary conditions for the thermal problem can be
of two types: prescribed temperature or prescribed heat
flux. The first case, prescribed temperature, is expressed
as

Ti = Tboundarw (2)

where Tpoundary 1S the temperature at the boundary. In the
case of prescribed flux we write:

o7;

—Aiki — = ¢voundar y 3
3y — Tboundary 3)

where Guoundary 1S the heating power at the boundary.
Adiabatic conditions are obtained if ¢poundary = 0.

2.2. Joule heat

The Joule heat term depends on the current carried by
the cable component /; and on the electric field V; de-
veloped along its length. In general terms we can write
that:

qfloule,l = Il'Vl'7 (4)

where, for consistency with the 1-D approximation
made so far, we have assumed that current and electric
field have the same direction. Note that this assumption
is no longer exact if the current redistributes along the
length of the cable. In this case additional heat is gen-
erated in the transverse resistance. As discussed later, for
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the scope of this discussion we neglect this effect. In the
case of a purely resistive material there is a linear rela-
tion between the electric field and current density in the
material:
V; ! I 5
=2t 5)
where o; is the average electrical conductivity of the
component. In the case of a component with an internal
structure and several constituent materials we define an
homogeneised electrical conductivity weighted accord-
ing to the area.

For a component containing a superconducting ma-
terial in parallel with a stabilizing shunt the relation is
more complex. The electric field in a superconducting
strand or cable is obtained experimentally and is usually
fitted using a power law:

z:%(gf. (©)

The constant 7} is the electric field set as the criterion to
define the critical current /.. The typical range for Vj is
107#-107 V/m (corresponding to more common units
of 1-0.1 uV/cm). The constant n in Eq. (6) defines the
electric field dependence on current in the proximity of
the I, transition. Strands and cables with uniform
properties are characterised by a large value of #n, of the
order of 10 and above.

To obtain a general expression for the Joule heat
dissipation in the composite component containing a
superconductor we distinguish the superconducting
cross-section Ay, from the other (stabilizing) materials,
with a total cross-section 4. For these last we define an
equivalent conductivity oy. The total current in the
component /; splits in a part through the superconductor
I, and a part in the stabilizer Iy = I; — I, such that the
longitudinal electric field in both components is identical.
The split itself depends on the non-linear voltage—current
relation for the superconductor, which could be different
from Eq. (6) as the measurements used to establish it
contain the contributions of both superconductor and
stabilizer to the longitudinal voltage. In principle a re-
lation of the type of Eq. (6) can be obtained from mea-
surements for the superconductor only, correcting for
the current sharing in the stabilizer. However it can be
shown that in the range of J; and n parameters given
above the current flowing in the stabilizer is small.
Therefore we can safely assume that Eq. (6) is valid for
the superconductor alone, substituting the total current
in the component with the current in the superconductor.

The longitudinal voltage equality in the supercon-
ductor and in the stabilizer can be therefore written as
follows:

[i *[sc ]sc "
() ™)

o5 As;

which is an implicit equation for the current in the su-
perconductor. Eq. (7) can be solved by an iterative
technique to obtain /. and the longitudinal electric field.
The total Joule heat dissipation is then given by Eq. (4).

Note finally that in accordance to the power law de-
pendence in Eq. (6), the electric field is small below the
critical current density, rising very quickly to large val-
ues above I.. For this reason this dependence is often
modelled as a step function, with a step from zero to
infinite electric field located at I.. Here we prefer to re-
tain the non-linear expression above for generality, still
with the possibility to specialize it to the simpler case of
a step in the electric field that can be obtained choosing
a very large n (ideally infinite).

2.3. Thermal resistances

In Eq. (1) we have introduced the thermal resistance
among two thermal components H;; to model thermal
coupling within a cable. The corresponding values can
be estimated in the case of soldered cables, where the
thermal coupling takes place through thermal conduc-
tion. Such an estimate is not possible in the case when
the thermal coupling takes place through contact sur-
faces, such as in multi-strand Rutherford or bundled
cables. Lacking experimental measurements of thermal
resistances, estimates can be obtained assuming that the
electrical and thermal contact resistances are correlated
through the Wiedeman—Franz—Lorenz law [8]:

R

Hy ="
] LoT’ (8)

where R;; is the interstrand resistance per unit length, L,
is the Lorenz number (2.45 x 1078 [Q W/K’]) and T is
the average temperature of the two components. In this
manner we profit from the fact that the electrical resis-
tance is a key parameter for AC loss considerations, and
is therefore often available through measurements or
estimates for multi-strand cables. We stress that the
above approximation is justified only to evaluate orders
of magnitude. The analogy to a conductive material is
not necessarily verified, and important effects such as
surface contact nature (e.g. sintering) or the presence of
stagnant helium permeating a cable are not taken into
account.

3. Flow model

The flow model is written for a set of H parallel, 1-D
channels that can exchange mass, momentum and en-
ergy among them. The coupling of the channels can
happen either through convection heat transfer at the
mutual interface, or through direct mass transfer from
one flow to the other. In Appendix A, we detail how to
obtain the set of the three following equations for the
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volumetric flow V), = A,v;,, the pressure p,, and the
temperature 7, of the coolant:

v, Ph%:% %_Phl/f 04,

P T e 2 ox
H
= —AyFy = > (T —valhy), ©)
i
opy Opn 2th
A L - -
oy + Vi ox + puc, ox
H , vi
= _Z{ChFZk + @ |:FZI< — vl — (hh _§>FZ/€] }
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kth
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keth
+C.I;1+6.I:~/\h7 (11)

where A4, is the cross-section of the channel (in principle
variable along the length), p, is the density and v, is the
velocity of the coolant in the channel. The equations
above contain the isentropic sound speed c¢;, the specific
heat at constant volume Cj, the specific enthalpy /4, and
the Gruneisen parameter ¢,. Note that, as shown in
Appendix A, the equations above do not contain any
approximations with respect to the conservative form
and they are valid for any coolant fluid.

The quantity Fj, is the friction force defined using the
friction factor f}, and the hydraulic diameter D, as

F =20, 2 oo, (12)

The quantities Iy, I';, and I'j, are the distributed
sources of mass, momentum and stagnation enthalpy
per unit length of channel, originating from expulsion
(or injection) of helium into (or from) another channel
with index & and from heat exchange. Fluxes are posi-
tive if they correspond to a net massflow from channel /
to channel k. Finally, the source terms ¢, and ¢,
represent, respectively, the heat that enters the channel /
per unit length through convection at the wetted pe-
rimeter and the heat flux due to the counterflow mech-
anism in superfluid conditions. For the moment it is
convenient to maintain the sources in this general no-
tation.

3.1. Boundary conditions

The imposition of boundary conditions to the fluid
flow is a delicate matter, that should take into account

the sign of the characteristics at the boundary [11]. We
have found that in the non-conservative form described
above it is possible to impose accurate boundary con-
ditions in a simpler manner if we limit our choice to a
closed pipe condition, or alternatively to in- and out-
flow into a volume at given pressure and temperature
[12]. The first case (closed pipe) is imposed setting:

v, = 0. (13)

In the second case, volume in- and out-flow, we match
the number of conditions imposed to the number of
characteristics entering or exiting the boundary surface.
In particular we have the following possibilities:

Case 1. Subsonic in-flow (v, < ¢;). In this case we have
two entering characteristics, one exiting characteristic.
Two variables are specified:

Phr = Pboundary; (143)
Th = Tboundary7 (14b)

where puoundary a0d Thoundary are the values of pressure
and temperature at the boundary.

Case 2. Supersonic in-flow (v, > ¢;,). For supersonic in-
flow we have three entering characteristics and no exit-
ing characteristic. Three variables must be specified:

Pr = Pboundary; ( 1 Sa)
Th = Tboundarw (ISb)
Vh = Aboundary Choundary ( 1 SC)

where Cpoundary 1 the sound speed at the boundary and
Apoundary 18 the channel cross-section at the boundary.

Case 3. Subsonic out-flow (v, < ¢;). In this case we
have one entering characteristic, two exiting character-
istics, and only one variable can be specified:

Ph = Pboundary- ( 16)

Case 4. Supersonic out-flow (v, > ¢;,). For supersonic
outflow there is no entering characteristic and three
exiting characteristics. In this case no boundary condi-
tion can be specified.

3.2. External source terms

The external source for the flow are represented by
heat transfer at the wetted perimeter of the channel, in
contact with solid walls. We write the generic source
term as

N
iy =Y puhu(Ti = T), (17)
i=1

where the sum is extended on the N solid walls of the
thermal components with index i in thermal contact with
the channel A, p;, is the wetted perimeter, A4;, is the heat
transfer coefficient and 7; is the wall temperature.
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3.3. Counterflow heat exchange in superfluid helium

The counterflow heat transport mechanism is peculiar
of heat transfer in superfluid helium (or helium II). This
term has a form of a non-linear diffusion [13]:

., 0 ~ 0T,
Qern = o <Ahkhax>, (18)

where £k, is an equivalent thermal conductivity defined
using the superfluid thermal conductivity function «x; as

) o7\ 23
kh:Kh/(a_xh) . (19)

3.4. Transverse fluxes

To give an explicit expression for the transverse fluxes
we indicate with vy, the transverse velocity from channel
h to channel k, and we assume that the two channels
have a boundary delimited by a perimeter p,;, of which
the fraction =y, is perforated. We have [14]:

Tl = T Drk Ve p = T, (20)
Il = Tk Dk Oni PU = 1t D, (21)
172

Iy, = nhkphkvhkp<h+3> + i e (T — Ti)

.
= <h +3> + i b (T — Ti), (22)

where 7, is the massflow from channel /4 to channel &
per unit channel length. We assume that the transverse
flow between the channels can be modelled as a dis-
charge between two volumes at different pressure [15].
The transverse flow velocity vy, is then given by

Unk = thk(Ph —pk), (23)
where the coefficient oy is given by

2

T 24
P|Ph —Pk‘ (24)

O =

The quantities p, v and % in Egs. (20)—(24) are, re-
spectively, the density, flow velocity and specific enth-
alpy taken from the upstream conditions of the
transverse flow, i.e.

__ [y forp,=p, 25

p {Pk for p, < px, (25)

b= {Uh for py = pr, (26)
v, for P < Pr,

T hh fOI' DPh >pk7

h= {hk for Pr < Dk (27)

In Eq. (22) the two terms take into account the fact
that energy transfer between the two channels can
happen either through mass convection (first term on
the r.h.s.), or through heat transfer at the boundary
(second term on the r.h.s.). The heat transfer happens on
the interface perimeter py with an equivalent heat
transfer coefficient Ay,.

3.5. Heat transfer models

The heat transfer coefficients #;;, between the coolant
in channel 4 and the solid wall i, or A, between coolant
flows & and k are computed using empirical correlations.
At present this is the most general approach as it relies
on experimental data. Correlation models for the heat
transfer coefficient have typical data fitting accuracy in
the range of some 10%, and predictive capability within
a factor 2.

3.6. Friction factor models

Similarly to the heat transfer coefficient, the friction
factor of the flow is computed based on empirical
correlations. Correlation models for the friction factor
coefficient have typical data fitting accuracy within a
factor 2.

4. Electrical model

The electrical model adopted here focuses on a cable
formed of E parallel electrically conductive components
characterised by a non-linear longitudinal resistance,
mutual and self-inductance. Within the frame of the
model the generic component can be a single strands, a
cable subunit, a segregated stabilizer, or any electrically
conducting structural component. It is further assumed
that each component has a constant current density in
its cross-section, and that current transfer happens
along the length of the cable in a continuous manner
through distributed electrical conductances.

The equations governing the evolution of the currents
in the components are derived in [9,16] and discussed in
detail in [17] in the case of a Rutherford cable. After
straightforward algebra, they can be written in the fol-
lowing matrix form:

ol o ([ oy |
lat+rl—@c<c ax> —AV s (28)

where the unknowns are the currents /, in the compo-
nents, packed in the array I. The matrices and vectors
depend on the cable geometry (e.g. inductance per unit
cable length 1), its properties (e.g. transverse conduc-
tivity per unit cable length ¢) and operating conditions
(e.g. parallel resistance r and external voltages Av®™ per
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unit cable length). See [17] for more details on their
structure.

4.1. Boundary conditions

The boundary conditions for the current diffusion in a
cable are dominated by the details of the connection of
the cable components within the coil (i.e. joints) or to
the coil ends. In fact, the conditions at the boundary can
be the leading effect for the current distribution along a
cable. One such example is the distribution of transverse
contact resistances within a joint. To avoid the signifi-
cant complication that could be induced by the necessity
of handling several different types of boundary condi-
tions, we have chosen to include the details of the con-
nections within the analysed domain. This is possible as
the model described here takes into proper account
longitudinal and transverse resistance variations along
the cable length. For the boundary itself we have then
considered only two simple limiting cases: components
insulated and individually fed, or shorted together. In
the first case, if the components are all insulated at the
cable end, the current is imposed by an external circuit,
ie.

[e = [boundary7 (29>

where lyoundary 1S the current at the boundary. In any case
the total current must be conserved at the boundaries,
and this implies that the above boundary condition can
only be imposed on E — 1 of the E electrical compo-
nents.

In the second case, if all components are shorted to-
gether, the voltage differences are by definition zero and
the equivalent boundary condition is (see also [16,17] for
a discussion of this boundary condition):

al,
= =0. 30
= (30)

4.2. Coupling with heat conduction model

To model the current distribution in a cable, the
electrical model needs to be coupled to the heat con-
duction model described earlier. This is obtained
matching a set of electrical components to correspond-
ing thermal components. The coupling between the two
domains is based on the fact that the longitudinal re-
sistance matrix r appearing in the electrical model de-
pends on the temperature computed in the heat
conduction model, while the current /; and the Joule
heat generation in the thermal components depend on
the current distribution computed in the electrical
model. In addition if current transfer takes place be-
tween components, heat is dissipated in the transverse
conductance.

The last effect is important to analyse the AC loss
properties of a cable, and is included in our model using
the formalism of [17]. The heating source due to current
transfer is computed using the voltage differences among
electric components. This calculation requires the
knowledge of the space derivative of the current in each
component, 0, /0x, and manipulation of the transverse
conductance matrix. Although conceptually simple, the
calculation is rather cumbersome. For the sake of sim-
plicity we omit here the discussion of this additional heat
source. This is justified also considering the fact that in
the case of stability and quench transients in a cable with
optimised current density the heat source associated
with transverse current transfer is generally small com-
pared to the Joule heating.

Finally, and for generality, we assume in the model
that the matching is not necessarily one-to-one, i.e. a
single electrical component can model the current flow
in several parallel thermal components, or conversely
one thermal component can model the temperature
evolution in several parallel electrical components. The
entries in the longitudinal resistance matrix for an
electrical component are computed as the parallel
resistance of all the thermal components coupled to it.
By analogy we distribute the current of an electrical
component among the coupled thermal components
according to the parallel of the longitudinal resistances.

5. Matrix form and system solution

The equations presented so far are numerous and
cumbersome to treat singularly. It is much more con-
venient to write in the following compact form for a
parabolic-hyperbolic system of PDE amenable of uni-
fied treatment:

Ou du 0 Ou 1

m§+aa—a<ga>+su:q, (31)
where the vector of unknowns u(x,¢) is defined assem-
bling the unknowns of each PDE as derived for heat
conduction in the N thermal components, conservation
balances in the H cooling channels and current distri-
bution among E conducting materials, i.e.

T
Vi
u= |(pn|- (32)
T,
I

The vector u has therefore size N + H + E. The matrices
appearing in Eq. (31) have a block structure that can be
written easily identifying terms in the equations dis-
cussed in the previous sections.

For the solution of the system of PDE Eq. (31) we
have chosen a finite element method in space [18] and a



L. Bottura et al. | Cryogenics 40 (2000) 617-626 623

finite difference algorithm of the Beam-Warming family
in time [19]. Practice [12] has shown that the combina-
tion of an independent space discretization and time
marching algorithm provides a flexible and accurate
mean to solve large systems that involve coupled
strongly parabolic equations, as is the case for the
thermal and electric components, and hyperbolic equa-
tions, as for hydraulic components. We have pro-
grammed the solver using Lagrangian elements with up
to six nodes (fifth order interpolation). The time
marching scheme has up to fourth order accuracy, au-
tomatic step adaption and error control. High accuracy
for both space and time integration is necessary to avoid
growing errors such as numerical quench-back [20].

6. An example of application

As we hinted in Section 1, the model for the evolution
of the temperature and flow has been already applied
and verified in several instances against experimental
data (see for instance the CHATS proceedings [21,22]).
Current distribution in superconducting cables, on the
other hand, has not been extensively measured nor
simulated. We have therefore concentrated on one ex-
periment performed by Krempasky and Schmidt [23]
that involves current distribution, and in particular its
coupling to temperature evolution. The experiment was
performed on a two-strand cable prepared with a 0.3
mm diameter, NbTi/Cu strand. The cable was twisted
with a pitch of 10 mm and soldered with Sn(50%)In. In
the middle of the cable, and over a length of approxi-
mately half a twist pitch (5 mm), a loop with a cross-
section of approximately 70 mm? was formed between
the strands. The cable was wound into a test coil, with
the loop placed in the coil center, normal to the coil axis.
The coil was then placed in a background magnet pro-
viding an AC vertical field. The AC field caused a
variation of the flux linked with the loop in the centre of
the sample. This induced currents in opposite directions
in the two superconducting strands, closing through the
solder along the whole cable length (supercurrents). The
supercurrent circulating in the centre of the sample was
measured by means of a Hall plate placed in the loop. In
this experiment the cable behaved as a bi-filar line with
an inductance per unit length of 0.5 pH/m. The loop in
the centre of the cable length had an estimated induc-
tance of 0.02 uH. The transverse conductivity per unit
length was 58 MS/m. Further details on the experiment,
results and interpretation can be found in [23].

We have modelled the experiment with two thermal
components coupled to two electrical components rep-
resenting the two strands. An hydraulic component, a
channel with a large cross-section thermally coupled to
the strands, was used to model the helium bath. Variable
electrical properties (inductance and transverse con-

ductivity) were taken along the cable length to model the
presence of the extra loop in the centre of the cable.
Because of symmetry, only one half of the total length
was modelled.

We show in Figs. 1-4 the comparison of experimen-
tally measured current and simulation results. The
measurements reported in Figs. 1 and 2 were made with
a sample length of 4.7 m and differ only for the field
sweep (reported in the inset). In the case shown Fig. 3
the sample length was 1.66 m, and the field sweep was
slow enough to reach steady-state conditions (see again
inset in Fig. 3). In these first three cases the sample was
superconducting throughout the transient, and the su-
percurrent induced could circulate freely in the sample.
The agreement of measurements and simulations is ex-
cellent, especially noting that no geometrical or electrical
parameters were adapted from case to case to fit data.

In the last case presented, in Fig. 4, the supercurrent
was induced by a 0.65 T field sweep in 4 s. Right after
the end of the sweep a 4 cm long heater covering the
center of the sample was switched on for 1.6 s. This
caused a quench of the central part of the cable, followed

40 T 03
- T ® E 0.1
< 20 T ° 0
‘qa) T S 250, ‘(gs 50|
10 1 i .
[3) k
0 el ————+———+—+—+——+—+—+—+—F+ o experiment|
E — simulation
-10
-10 0 10 20 30 40 50
time (s)

Fig. 1. Measured and simulated supercurrent generated by a field
ramp in the experiment of Krempasky and Schmidt [23]. Sample length
4.7 m, field ramp as shown in the inset.
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Fig. 2. Measured and simulated supercurrent generated by a field
sweep in the experiment of Krempasky and Schmidt [23]. Conditions
as in Fig. 1, but trapezoidal field sweep as shown in the inset.
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Fig. 3. Measured and simulated steady-state supercurrent generated
by a slow field sweep in the experiment of Krempasky and Schmidt
[23]. Sample length 2.35 m, trapezoidal field sweep as shown in the
inset.
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Fig. 4. Measured and simulated supercurrent generated by a field
ramp in the experiment of Krempasky and Schmidt [23]. Sample length
2.35 m, fast field ramp as shown in the inset. The center heater was
fired at approximately 4.25 s, for a total of 1.6 s.

by a recovery as soon as the heater was switched off. The
increased longitudinal resistance pushed the supercur-
rent out of the quenched region. The supercurrent still
flowed in the unquenched length of the sample, and, as
soon as the central part recovered, diffused back into the
center. In this case the agreement between experimental
and simulation results is still satisfactory, although for
this case the simulation overestimates the peak current
by 20%. Examining in detail Fig. 4 we note that the
maximum error is found at the end of the field sweep,
i.e. before the heater is fired, and that the simulation is
in good agreement with the measurement during the first
second. The difference between simulation and experi-
ment can be explained if we postulate that during the
strong field sweep, and above a certain field, the strands
develop a finite longitudinal resistance caused either by
onset of saturation in the filaments or by AC loss (i.e. a
dynamic resistance). These effects are not included ex-
plicitly in the model.

The simulations presented were run using meshes with
250-1500 linear or parabolic elements, and adaptive

time integration with second order accuracy. The typical
CPU time required to simulate the transients presented
was modest, ranging from 2’ to 10’ on a DEC-Alpha
processor.

7. Conclusions

We have presented a consistent and comprehensive
model for the thermal, hydraulic and electric analysis of
superconducting cables. The model, to the best of our
knowledge, is the first that offers the possibility of a
unified treatment of the coupled fields, retains a large
flexibility and is suitable for analysis of long cable
lengths. In spite of the significant complexity of the
single equations describing the evolution of tempera-
ture, flow and current, we have finally cast them in a
matrix form is simple and can be solved by a dedicated
PDE solver. We have shown that the model is man-
ageable applying it to a current distribution experiment
that involves, in one case, the interaction of two of the
three coupled fields (thermal and electric). In these
simulations we achieved acceptable matching of the
experimental data. More validation work is needed to
explore the possibilities and limitations of the model,
but we believe that already in its present status the range
of potential applications is very large, from detailed
analysis of cable transients to assistance in the design of
new cable configurations, from stability margin calcu-
lation to consistent analysis of joints.

Acknowledgements

The experimental data used for benchmarking the
model were kindly provided by C. Schmidt, FzK, Ger-
many.

Appendix A. Non-conservative flow equations

The non-conservative form of the flow equations
discussed in the text is convenient because the pressure
appears explicitly. This improves the stability of the
numerical solution, as stated in [12]. To obtain it we
have followed Arp [24]. We start from the conservative
form of the mass, momentum and energy conservation
in a 1-D channel identified by the index /:

Oy, OpuVi S
Ay —= =— E re Al
h at + ax = hk» ( )
kth
0p, Vi 0p,Viou opn b
Ay = A, - Y T A2
o o g T T ; e (A-2)

kth
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op,Anen | Op,Viey apth
hat + ox **Zrthrthrq(fha
k;éh
(A.3)
where we have introduced the volumetric flux:
V;, = A},Uh. (A4)

To derive the non-conservative form we make use of
the following thermodynamic relations between specific
internal energy i, pressure p, density p and temperature
T:

di = (’;’ — 9C, T) %p+ cdr, (A.5)

<02 —?)dp =dp — @pdi. (A.6)

The relations involve the isentropic sound speed ¢, the
specific heat at constant volume C and the Gruneisen
parameter ¢. In addition we remember that the relation
between total and internal specific energy is:

2

e=i+ > (A.7)
while the specific enthalpy /% is related to the internal

specific energy by
. P
h=i+=. A.8
; (A.8)

We start now with the momentum balance, Eq. (A.2),
subtracting the continuity equation, Eq. (A.1), multi-
plied by the velocity, and we obtain the momentum
balance in non-conservative form:

Vi puVi OV, opi  piVy 04,

Pha, T A tAv s AT

ot A, Ox ox A;  ox
H

= —ApFj — Z(FZk

k=1
k#h

- Uhrzk)- (A9)

We now take the energy equation, and we explicitate
the two terms forming the total energy, we subtract the
continuity equation multiplied by i, +v7/2, and the
momentum balance multiplied by v, to obtain:

AhPh%*‘Pthaa + Dn E;If
H 2
= ViFi _Z[FZk_UhFZk_ <ih _%>F£k]
o
+ 4§, + 61:/11 (A.10)

We can now use the relation (A.5) to substitute for the
di;, differentials in Eq. (A.10), and we obtain:

AppCi 66T + 0 ViC 6@1);
42 (Ah aapth apa,;th) — @3 Ch T (Ah%-i- Vhaaph>
H 2
=ViF, — Z |:F2k — vl — (ih —Uz—h> sz} 4+ ep
B

(A.11)

that can be reduced using the continuity Eq. (A.1) to
substitute the terms underlined and to obtain the desired
energy balance in non-conservative form:

oT, o7, av,
AppyCh— i + 0 ViCh 2+ 040y Co Ty
ot Ox Ox
H 2
= ViFy — ;[FZk — oLy — (hh _Eh_ ﬁDhChTh)FZk]
kth
+ G+ dop e (A.12)

A third equation is needed, the non-conservative form
of the continuity balance. This is obtained substituting
the dp, differential using the thermodynamic identity
(A.6) in the continuity Eq. (A.1):

opn ., i 2 04,

A, Py P
var TV TP TP

oi oi o,
— 0, (Ahph a: puVi a;: phax”>

(A.13)

We reduce further the equation above, in particular the
terms underlined, adding the non-conservative inter-
mediate form of the energy equation Eq. (A.10) multi-
plied by ¢,, and we obtain:

opu opn , OV

Ay, —+V,—
e + (. +Phha

: v
= _E {ciFZk+(Ph|:FZk_UhF;k_ (hh _5}’>sz:|}
=

k#h

+ @, ViF) + Mﬁ, + (ph"];/',w (A.14)

that is the desired non-conservative continuity balance.
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