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In large superconducting magnets built using force-flow cooled conductors, such as those 
being designed for next generation fusion machines, the quench propagation is a three- 
dimensional phenomenon. In this paper we develop a method for the analysis of quenches 
in 3-D which is extremely versatile and comprehensive. The method is based on the 
parallel solution of a set of 1 -D problems represented by the helium flow, heat conduction 
and quench propagation along the conductor length. Transverse heat exchange among 
conductors is then explicitly inserted in the model, thus achieving the desired 3-D 
capability. In the model developed for the 1-D analysis we have foreseen the possibility 
of taking into account the thermal gradients in the cable cross-section, and the changes 
of magnetic field and operating current which are typical of a quench transient. 
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The analysis of quench propagation for force-flow 
cooled conductors has always been a matter of fun- 
damental importance for the design of the protection 
scheme of a superconducting magnet ~. This is even 
more true for the large magnets which are under design 
for fusion machines of the next generationL These 
magnets will be a considerable investment compared to 
the cost of the whole plant, and will store an amount of 
energy in the order of several tens of GJ. Therefore 
there is an increasing interest in the issues of safety and 
protection of these systems. 

The quench propagation in force-flow cooled super- 
conducting magnets has so far been studied only in a one 
dimensional (l-D) approximation, assuming that the 
dominating mode of propagation is that in the 
longitudinal direction of the cable (along the helium 
flow). This hypothesis is at the basis of most of the 
quench analysis codes developed in the last 15 
years 3-7. 

The one dimensional behaviour is only a simplifying 
assumption, and should be avoided if a more powerful 
modelling tool is available. In a real superconducting 
magnet, the initiation and the propagation of a normal 
zone depend not only on the longitudinal heat fluxes, 
but also on the heat diffusion in the winding pack cross- 
section, i.e. transverse to the main conductor axis. A 
normal zone can be initiated by heat conduction in turns 
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or pancakes adjacent to the one initially quenched, thus 
increasing the normal zone propagation speed in the coil 
and decreasing the thermal gradients among neighbour- 
ing conductors. Therefore, one can expect that the 
calculations of the quench propagation and of the hot- 
spot temperature performed with the 1-D models are 
generally conservative, as in this approximation the 
energy deposition tends to be concentrated in the cable 
region initially quenched. For the cable design this 
means over-dimensioning the stabilizer and therefore 
losing efficiency. Furthermore, in the case of uncon- 
trolled transients, the calculation performed in the 1-D 
approximation may predict catastrophic events that are 
not realistic, such as the loss of insulation or melting of 
the cable. The question of the relevance of the 1-D 
assumption is therefore not only of academic interest, 
and there is scope in changing this commonly used 
model to include 3-D effects in the calculation. 

Finally, most of the 1-D approaches were based on 
approximate expressions for the Joule heating term in 
the superconducting strand, simplified functional 
dependence of the magnetic field on the conductor and 
of the time dependence of the operating current. Because 
we were starting the development of a new model, we 
decided to maintain it as general as possible, so that we 
would be able to cope with the large number of different 
situations arising in the design of a fusion magnet. 
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The model presented here is based on a general cable 
configuration formed by the parallel channels of the 
helium flow and several longitudinal heat and current 
conductors, allowing for thermal gradients in the cable 
cross-section. It includes the 3-D effects by permitting the 
heat transfer between adjacent cables. This extension 
has been achieved in a simple manner preserving the 
transparency of the basic 1-D model. Current, magnetic 
field and source terms (e.g. Joule heating) are arbitrary. 
Finite elements are used in preference to finite dif- 
ferences as a way to increase accuracy and flexibility. 

Basic equations 

For a force-flow cooled conductor the helium flow can 
be regarded as 1-D along the cooling channels with a 
good degree of approximation. We assume throughout 
this work that the flow always remains in single phase, 
a condition satisfied when supercritical helium is used as 
coolant. The analysis of the quench propagation requires 
the solution of the following equations. 

Fluid f low and energy transport equations for a 
I-D channel 
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The set of unknowns is the density p, the velocity v, the 
helium pressure p and temperature The, the total and 
internal energy e and i respectively. In the above Ahe is 
the cross-sectional area of the helium conduit, D~ is its 
hydraulic diameter and S is the perimeter of the surface 
on which the convective heat transfer from the solid 
takes place at temperature T,. The two coefficients f and 
h are the friction factor and the heat transfer coefficients, 
descriptive of the turbulent flow conditions. A state equa- 
tion is needed to relate pressure and temperature to inter- 
nal energy i and density p. 

Heat conduction in the solid composite 

In the general case, the following form of the conduction 
equation in three dimensions holds: 

Here the unknown is the temperature of the solid, T,. 
The properties of the solid materials to be specified are 
the heat capacity C and thermal conductivity K. The 
source terms are the external heating power density Qcx, 
and the Joule heating power density Qj. Finally, n 
represents the direction normal to the boundary, poin- 
ting outwards. 

For the present purpose it is convenient to deal only 
with the 1-D form of the Equation (5) combined with the 
boundary condition (6), written along the longitudinal 
conductor axis x, valid for the hypothesis of an 
homogeneous conductor component i with cross-section 
A~, heat capacity C~, thermal conductivity K~ and 
temperature T,.. 

a (KAY,)= 
AipCi Ot - Ai Oxx Ox J 

hlSi_he(The - t i )  h- E hqSo(TJ - T~) + A,Q, 
J 

(7) 

The source terms on the r.h.s, of Equation (7) are 
respectively the heat exchange with the helium at 
temperature Tr, through a heat exchange coefficient h~ 
and a contact surface S~-ho, heat exchange with another 
conductor j at temperature Tj through a heat exchange 
coefficient h 0 and a contact surface Sq, and the density 
of heating power Qi (external or Joule) per unit length. 

Joule heat generation 

Special attention in the superconducting composite is 
given to the Joule heat generation term, With reference 
to an electric conductor with negligible dimensions in 
transverse direction to the current flow, the Joule 
heating power is a function 

Qj = Qj(T, B, J) (8) 

of the temperature T and the field B, in turn functions of 
position and time, and of the operating current density 
J in the conductor, dependent only on time through the 
solution of the circuit equations presented later* 

The Joule heating Q~ is related to the current carrying 
capability of the conductor specified by the critical 
surface Jc(B, T), of which two typical examples are 
reported in Figure 1. To remain as general as possible, 
we use the following method to compute the Joule 
heating term: 

--for temperatures smaller than the current sharing 
temperature Tcs no resistive loss will appear and 

Qj = 0 (9) 

pC OT~ _ V ( K v T , )  = Qex, + QJ (5) 
ot 

with the following convective boundary condition for 
the heat flux on the surface S at the interface with the 
helium: 

- K  aT, [ = h(T, - Lo)  (6) 
On Is 

*The Joule heat generation in the composite conductor, in reality, 
will also depend on the current sharing transient. During the very 
early stage of the current sharing the current f lowing in the super- 
conductor exceeding the value of Jc will have to be transferred by 
inductive coupling and dif fusion into the copper. This 
phenomenon, completely described by the Maxwel l  equations, is 
of  extreme complexity. However,  the characteristic t ime constant 
r c for the conductors considered here is of the order of  hun- 
dreds of  /~s to some ms, while the quench characteristic times 
are between some tens of  ms (initiation) to some tens of s 
(development). Therefore the current transfer can be assumed as 
a small perturbation and neglected. This is equivalent to the 
assumption of an instantaneous transfer (r c = 0). 

660 Cryogenics 1992 Vol 32, No 7 



Quench analysis. Part I: L. Bottura and O.C. Zienkiewicz 

Current density 
Jc (A/cm 2 ) 

0 6 

o\ 
b T i N  

T (K) " ~ B (T) 

Figure I Jc(B, T) surfaces for Nb3Sn and NbTi 

--for temperatures greater than the critical temperature 
Tc the whole loss will be concentrated in the copper 

Qj = J2pc . (10) 

where Pc. is the copper resistivity 

--in the current sharing regime part of the loss will be 
in the copper and part in the superconductor. In this 
regime we can write that the total loss is 

Qj = ac, Qjo. + AscQj= (11) 
Ac, + Asc 

where the Joule heating in the copper is given by 

aJc. 2 =JcuPc. (12) 

and the Joule heating in the superconductor 

= JcopcuJc  (13) 

where we used Jc, to indicate the current density 
shared by the superconductor in the copper, i.e. if I is 
the operating current: 

1 - JcA,c 
Jc. - (14) 

Acu 

The term Jc.Pc. is the electric field appearing along the 
cable due to the resistive current sharing in the 
stabilizer. 

Note that using the assu.mption of linear dependence of 
Jc on T one obtains for Qj the usual expression 

Qj= g(  I°~)Zpc, (15) 
\acu  / 

where 

°-L, 
g = Tc~ if T~ < T <  T~; 

i f T > T  c 

(16) 

J, Jc 

j I Normal 
c ~. operating Current 

[ 

[ , ~  ~ shared current 
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i J " - Y ~  current density 

Top Tcs Tc T 
Figure 2 Operating point and definition of the current sharing 
temperature in the case of linear Jc versus T dependence. The 
effect of the increase of the operating temperature is also 
indicated by the shared current density 

where the definition of Tc~ is given in Figure 2. 
However, Equations (11)-(13) are valid for any 
dependence of J¢ on T and B, while Equations 
(15) and (16) hold only in the case of linear J~ versus T 
dependence and should be, in principle, avoided if the 
J~ function is completely given. Finally, the copper 
resistivity Pc, must ie treated consistently in the 
calculation as a function of magnetic field and 
temperature. 

Circuit equations. As shown above, the heat produc- 
tion term depends on the current flowing in the conduc- 
tor, and this must be determined at any time by the 
solution of the electrical network formed by the pan- 
cakes in the inductively coupled coils and the external 
electrical components. In the case of a set of n induc- 
tively coupled coils, with independent power supply and 
dump resistors, the current li in the ith coil will be a 
function of time and of the currents in the other coupled 
circuits/j through the differential equation 

d/j dl~ 
~_~ M'j ~ + Li ~tt + Ri l i= Vi 
J 

(17) 

where Mij and Li are the mutual and self inductances 
and R~ is the total resistance of the circuit. The first two 
are determined by the geometry of the circuit and will 
remain constant throughout the evolution of the quench. 
The term V~ is the voltage of the external power supply. 
Its value depends on the preprogrammed behaviour of 
the power supply and on the (V, I) characteristics. 

The total resistance of each circuit is a function of time 
as it contains the contribution of the coil internal 
resistance Rq,e,ch which develops in time as the quench 
front propagates and the temperature changes. Further, 
due to the effect of magnetic field on copper resistivity, 
a change in the operating current in the magnet system 
will also affect the coil resistance. 

Magnetic field in the coil 

The magnetic field in the coil, B, can be computed using the 
Biot-  Savart law. Usually the problem is linear function of 
the operating current of the magnets (no ferromagnetic 
materials), and the field can be computed using influence 
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matrices calculated at the beginning of the transient and 
"stored. This increase greatly the efficiency of the 
calculation. 

All the above equations need a consistent set of boundary 
and initial conditions. In particular, for the helium flow 
we assumed that the 1-D channels are connected to 
pressure reservoirs at inlet and outlet. The reservoirs 
represent manifolds with a large volume, but they can be 
assigned a pressure and temperature variation in time to 
model finite volume conditions. An alternative is a sym- 
metry boundary condition on the flow, which also cor- 
responds to a closed valve at the channel inlet or outlet. 
For the heat conduction equation, adiabatic boundaries 
are assumed around the coil, which is usually a sensible 
approximation of a well-shielded design. The calcula- 
tion of the current requires the specification of the initial 
value of the current in the branches of the electric net- 
work, while for the magnetic field no boundary condi- 
tions are required (they are already satisfied by the 
Bio t -  Savart law). 

Model  

Without loss of generality, we consider the conductor 
configuration of Figure 3, representing a typical cable- 
in-conduit conductor 8, and the winding scheme in 
Figure 4. We can observe that the winding pack of a 
force-flow cooled superconducting coil presents a large 
anisotropy, in which we can clearly identify two main 
directions: the longitudinal axis of the conductor, 
characterized by a typical length of the order of 
hundreds of metres, and the transverse direction, nor- 
mal to the longitudinal axis, which lies in the plane of 
the winding pack cross-section and with a typical length 
of the order of some centimetres. The modes of energy 
transport and propagation of a normal zone are substan- 
tially different in these two directions: in the 
longitudinal direction the helium flow is usually far 
more effective than heat conduction in propagating in the 
normal zone, while in the transverse direction heat con- 
duction through cable jacket and insulation is the only 
mechanism responsible for the propagation. Finally, the 
thermal properties in the two directions are also largely 

Coil 

I 

. . . . .  - r---  . . . . .  ) i ~  

I 

I 6round 
insulmtton - -  f NN 
inter-pancake 

[//////f/// l~_ insu le t lon  

~ in ter- turn 
~;~ insulation 

.~::-.}.:~::.:~ 

Enlargement of the winding pack 
cross section above 

Figure 4 Schematic v iew of the winding pack configuration 
assumed 

non-isotropic as the longitudinal heat conductivity of a 
cable is greater by several orders of magnitude than the 
transverse one. 

It is natural to use these properties in the formulation 
of the computational model. In fact, the mere application 
of a brute force method, involving full meshing the 3-D 
domain, would be highly inefficient in terms of com- 
putational costs and could give serious numerical dif- 
ficulties. The approach proposed here is to discretize 
the coil using a set of 1-D channels, and to couple these 
using an appropriate model of the transverse thermal 
resistance of the winding pack. A schematic view of this 
model is given in Figure 5. 

j l n s u l a t i o n  . .  

12"/ " .~/ S tee l  j a c k e t  
J 

~ C a b l e  

( s u p e r c o n d u c t o r & c o p p e r )  , 1 ~ = = ~ ! ~ ~ _ _ ~ 4 /  ""k - - ~ " ~ ° ~  Mu't'-d°f no~. 

Figure 5 Approximation of the original 3-D problem with a set of 
Figure 3 Schematic view of the cross-section of the conductor coupled 1-D channels thermally linked in the cross-sections of the 
configuration assumed winding pack 
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Model  for  the 1-D channel  

This is the basis of the quench analysis model, and con- 
sists of a 1-D representation of the cable in its longi- 
tudinal direction. Here the components forming the I-D 
channel cross-section in which the helium flows are the 
superconducting strands and the assembly of jacket and 
insulation. The copper in the superconducting strand has 
a conductivity several orders of magnitude greater than 
that of the other components in the whole temperature 
range (from cryogenic temperature to room tempera- 
ture). On the other hand the dominating heat capacities 
are those of the helium in the low temperature range (4 
to 30 K) and those of steel and insulating materials 
(epoxy resins) in the high temperature range (30 K to 
room temperature). 

Because of these differences in the material proper- 
ties, it is not possible to combine all heat capacities and 
thermal conductivities. For instance, as the heat capacities 
change with temperature by several orders of magnitude 
in the range from 4 K to 50 K, the neglect of a small 
temperature gradient between the components of the 
strands in the cable (copper and superconductor) and the 
cable wall (jacket and insulation) could result in a large 
over-estimate of the total heat capacity of the cable. This 
is particularly true for cable-in-conduit conductors, 
where the steel and the surrounding insulation are not in 
direct, intimate thermal contact with the strands, but 
exchange heat mostly through the helium. In our model 
we assumed that the copper and superconductor in the 
strand have the same temperature by virtue of the large 
thermal conductivity of copper. At the same time the 
helium temperature in the channel will also be uniform, 
as in general the flow is highly turbulent and therefore 
involves a large degree of mixing. With regard to the jacket 
and insulation we approximated the temperature 
distribution by a uniform average temperature. The 
effects of the temperature gradients in the cable cross- 
section are taken into account, at least up to the first 
order, by separating the three components: strands, 
helium and jacket. The strands and the jacket are both 
in thermal contact with the helium, which acts as the 
main thermal coupling between them. In addition it is 
assumed that strands and jacket are in direct contact on 
a portion of their surface, thus adding a further thermal 
coupling term. The resulting model is simple to treat, 
and physically more realistic than that obtained by com- 
bining the heat capacities in one single point. 

The model for the 1-D analysis is shown in Figure 6. 
The heat conduction equation (7) has to be converted 
into the following two equations for the strands and 
jacket respectively: 

Adiabatic 

Conductor ~ 

Jacket tot 

Figure 6 Schematic view of the 1-D model used for the conduc- 
tor in the longitudinal direction 

Equation (18) refers to the strand (subscript st), while 
Equation (19) is for the jacket and insulation (subscript 
jk). Note that for the contact to the helium and for the 
inner contacts of strands and jacket two different heat 
transfer coefficients have been used in the two equations 
above. In fact the heat transfer to the helium is sub- 
stantially different from that at the contact surface 
between strands and jacket. The first, ha, is defined 
using turbulent correlations, while the second, h2, can 
be obtained only from measurements of thermal 
resistance and depends on the type of contact. Note 
also that in Equation (19) no source term has 
been included. In fact the external heating sources 
are usually located in the strands and the Joule 
heating in the jacket is negligible due to its high elec- 
trical resistivity at cryogenic temperatures. 

The thermal properties for Equations (18) and (19) are 
obtained as weighted averages; in particular the density 
is given by the area weighted average of the densities of 
the single components 

~Ji'= ipiAi p -  
~'i'= i Ai 

The thermal conductivity is treated similarly 

~7= IKiAi 
K -  

~"i'= iAi 

AstPCst 19TstoT - Ast ClO'X (gst ~X ~ 

= h,Sst_,e(T,~ - Tst ) + h=Sst-jk(Tj, - [/'st ) 

+ Ast(Oe,t + (~J) 

aTjk -AJ k a ( dTjk'~ 
AjkaCjk ~Ot OXX Kjk Ox /I 

-- h ,S j~_ .o (T~o  - TjO + h:S~,_j~(T~, - T.,O 

(18) 

(19) 

while the heat capacity is given by the mass averages 

~,~'= ipiCiAi 
C -  

}7" 7= I piAi 

3-D model  o f  the coi l  

The geometry of the jacket and the insulation between 
two adjacent cable spaces resembles very closely the 
situation of a composite slab. Therefore an approxima- 
tion to the heat transfer in the winding pack can be 
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Insulation 
element 

• N' c.°,..o°c. 

~ ~mulU hnk 

Figure 7 Equivalent multi-link model for the heat flux in the 
winding pack. The sandwich of jacket and insulation is 
substituted by a series of thermal resistances with degrees of 
freedom lumped at the centre of each layer of the sandwich 
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Figure 8 Equivalent single link model for the heat flux in the win- 
ding pack. This is the lowest level of approximation that can 
describe the heat f low between cables 

resembles in a close manner that of the original 
system? 

obtained substituting each portion of jacket and insula- 
tion between two conductors with an equivalent slab 
having the same average length in the direction 
normal to the heat flux. With this simplification 
the heat diffusion in the winding cross-section can 
be regarded as a set of independent 1-D problems 
between the cable spaces. 

The 3-D quench propagation can therefore be reduced 
to a set of 1-D problems with nodal links obtained 
through the heat conduction in 1-D through the com- 
posite slabs, as shown in Figure 7. The thermal links are 
located between nodes of adjacent turns in each pancake, 
and between nodes belonging to the same turn but in 
adjacent pancakes. Only conductors with adjacent faces 
are coupled, meaning that the heat flux across the 
corners of the cables is neglected. 

The heat transfer in each composite slab presents a rela- 
tively easy problem, which could be solved again by 
discretization of the domain into finite elements. Never- 
theless, it is advantageous to go further with the 
simplification, reducing the number of elements needed 
for the solution. Each multiple layer slab could be 
assimilated to a single layer link, with an equivalent heat 
conductivity, or thermal resistance, and heat capacity. 
The thermal resistance and the heat capacity should be 
chosen in such a way to guarantee the dynamic 
equivalence between multiple and single links, that is to 
say that both the steady state and transient effects on the 
temperature distribution should be considered in the 
lumping. The last level of approximation is therefore 
constituted by a set of 1-D channels cross-coupled, turn 
to turn and pancake to pancake, through a single layer 
link with given (non-linear) thermal resistance and heat 
capacity as shown in Figure 8. The amount of saving is 
clear, but two questions still have to be answered: 

-- How good is the approximation of I-D heat flux in 
the jacket and insulation of each cable? 

-- How shall we choose the values of thermal properties 
of each link in order to get the response which 

The answer to these two questions has to be sought in the 
fields of the substructuring 9 or model reduction 
techniques ~o, as the procedure proposed consists of the 
reduction of the number of degrees of freedom of the 
problem. 

Instead of using the rigorous formulation of the 
problem let us come back again to the simple analogy 
with the I-D slab. In steady state conditions, assuming 
that the properties are linear it is possible to define the 
heat resistance of the I-D slab as 

1 
h = - -  (20) 

Ei L,. 

Ki 

and the heat flux through the slab is equal to 

¢!" = hAT (21) 

where AT is the temperature difference across the slab. 
For a steady state non-linear problem it is possible to use 
a reasonable approximation of the thermal resistance by 
performing a further subdivision of the slab in portions 
with nearly constant thermal conductivity. The limit of 
this procedure is the differential equivalent of Equation 
(20). 

1 
h - (22) 

,. K(x) 

Although these simple results are only valid in steady 
state conditions, we can assume that they give a good 
approximation of the dynamic behaviour in the time 
scale of interest. In fact, during a transient, the 
temperature distribution and the heat flux will tend 
asymptotically to the steady state solution. In this aspect, 
the steady state can be regarded as the mode with the 
lowest frequency (apart from the thermal equivalent of 
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Figure 9 Schematic view of the details of the coupled 1 -D chan- 
nels equivalent to the initial 3-D problem. The internal structure of 
the coupling links is shown 
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I~ I-1 

T2 TB 
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Figure 10 Configurations considered for the calculations of the 
thermal resistance of the links. The values of the temperature at 
the boundaries of the slab are given 

a rigid body displacement). Tests performed in relevant 
geometries and under relevant initial boundary condi- 
tions have shown that the situation can be closely 
modelled by a 1-D slab in steady state t'az. 

A detailed view of the resulting model for the coil is 
given in Figure 9, where the structure already shown in 
Figure 5 is expanded. 

For the calculation of the value of the thermal 
resistance of the link, two types of composite structure 
have been considered: a two-layer slab and a three-layer 
slab. The first is the case of two cables in direct contact 
at their jackets, the second that of the jacket-  
insulation-jacket sandwich. Given the temperature at 
the boundaries of the slab, T A and TB in Figure 10, the 
steady state value of the temperature in the interior 
points is easily calculated in the approximation of linear 
properties. In the case of the two-layer composite, we 
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have 

K~ K~ 

T I = 
KI +K~ 

LI L~ 

while for the three-layer composite 

(23) 

Ki K2 Ki K~ K~ K3 
L,L-- TA + -  - TA + - -" T, LIL3 L2L3 

TI = (24) 
KtK2 + KIK3 + K2K3 
LIL2 L I L 3  L2L3 

Ki K 2 K~ K~ K2 K~ 
r A +  - TB+ T,, 

. L i L3 L2 L3 
T~ = (25) 

KIK2 + KIK3 + KeK3 
Li L2 Li L3 L2 L3 

Once the temperature at the interior is known, it is 
possible to compute the value of the average thermal 
conductivity of each layer. To simplify matters, the 
value of K is computed at the average temperature of the 
layer. In fact the solution of Equation (23) or of Equa- 
tions (24) and (25) requires an iterative procedure. 
Direct iteration can be performed quite efficiently 
(generally three to four iterations are enough to reach a 
relative error of less than 10-3 of the heat flux). Once 
the solution has converged the thermal resistance is com- 
puted using Equation (20). This is finally used to com- 
pute the equivalent heat transfer between adjacent 
conductor jackets, according to Equation (21). 

In i t ia l  c o n d i t i o n s  

The initial condition for a coil in which a quench starts 
is, in general, that of normal operation. The coil is cooled 
by a steady flow of helium under given heat loads. In the 
model considered here the distribution of the variables 
should be computed along the channel. As we have 
chosen an explicit solution method for the helium flow 
a relaxation procedure could be used letting an initial, 
arbitrary distribution (e.g. zero flow) evolve to the 
natural steady state. This is feasible but time consuming, 
as the time stepping should cover at least a couple of 
residence times of the coolant in the cooling path to 
achieve a steady state condition. Therefore an approxi- 
mation is used for the determination of the initial steady 
state distribution in the channel. Neglecting all the time 
derivatives in Equations (1)-(3)  and assuming that the 
heat diffusion in the conductor (Equations (18) and (19)) is 
negligible, the resulting set of equations is much easier to 
solve: the mass flow is constant (from the steady state 
continuity equation), and for relatively small flows (as 
in typical technical applications) the pressure drop is 
given by 

Op = 2f  Ov2 
Ox -Dh (26) 
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where the compressibility effects have been neglected. 
The energy equation can be written in terms of enthalpy 
of the fluid h = i - ( p / p )  

Oh 
rn - = A ~ Q ~ ,  (27) 

Ox 

where again the compressibility terms have been 
neglected. An approximate solution of the two equations 
above can be achieved assuming that the r.h.s, of Equa- 
tion (26) is constant along the pipe length. In this case 
the pressure distribution is linear along the length and 
the pressure drop is given by 

A p  = 2 f  p v -  L (28) 
Dh 

where L is the pipe length. The enthalpy distribution is 
also easily computed from Equation (27) by integration 
of the external heating, which is an assigned function of 
space. The local values of pressure and enthalpy 
uniquely determine all the other variables of the 
helium. Helium temperature and density are therefore 
known, and the latter can be used to determine the flow 
velocity in the assumption of constant mass flow. The 
conductor temperature is then set equal to that of helium, 
assuming that in steady state the temperature gradients 
between conductor and helium must be small. 

Method of solution 

For the solution of the helium flow and of the heat con- 
duction along the conductor longitudinal axis we used 
the finite element method 13 (FEM). This has the advan- 
tage of giving higher accuracy and more modelling 
freedom than, for instance, the finite difference approxi- 
mations of the governing equations. The 1-D model of 
the cable cross-section was translated into a finite ele- 
ment with three thermal degrees of freedom per node: 
strand, helium and jacket temperature. In addition to 
these, the flow variables were defined at the helium 
nodes. The 1-D channels were obtained by assembly of 
these elements. Note that the element can be easily 
modified to take into account other conductor configura- 
tions, e.g. the case of several independent cooling chan- 
nels in the conductor, or to model better the jacket 
structure, subdividing it into layers of steel and insula- 
tion 6. 

The solution of the helium flow was based on an 
explicit two-step form of the Taylor-Galerkin 
algorithm ~2-H, which offered optimal compromises 
among accuracy of the integration, CPU cost and pro- 
gramming simplicity. For the heat conduction equation 
an implicit solver was used. Implicit treatment was 
implemented also in the heat exchange among the com- 
ponents of the 1-D element, while explicit coupling was 
used among the channels, to form the 3-D assembly. 
This choice was justified by the fact that the time constants 
of the heat transfer with the helium are very small (of the 
order of one millisecond) compared to those of the 
heat transfer among conductors in the winding pack 
(typically some tenths of a second). Therefore, the 
simplification of the data structure was obtained without 
major penalties due to the conditional stability of the 
explicit parts of the solution algorithm. In fact, the 

strictest requirements on the time step were dictated by 
the algorithm used in the solution of the helium flow. 

The circuit equations were solved by standard tech- 
niques adopted in initial values and ordinary differential 
equations, and the coupling to the thermal-hydraulic 
analysis was achieved explicitly. This also posed no 
serious problem for stability and consistency of the 
algorithm, as the time constants of the electrical circuits 
modelled are in general several orders of magnitude 
larger than those involved in the quench propagation. 
Finally, the magnetic field was computed at each time 
step by means of preprocessed influence matrices, 
whose coefficients link the field at any point to the 
current in the circuital branch. 

The final algorithm could be broken in modules per- 
formed independently at each time step, so that there 
is a great potential for parallel processing and 
speed increase. In fact, great attention was devoted to 
achieving a sufficient CPU speed to allow dealing with 
very large problems arising when a whole coil is 
modelled. Material properties and helium property 
routines were also subject to this optimization process to 
guarantee that even with extremely large problems (e.~. 
a complete coil) a solution could be obtained m 
reasonable computing time (some CPU hours). 

Conclusion 

The model presented for the analysis of quench in supercon- 
ducting, force-flow cooled magnets advances substantially 
those previously used as it allows inspection of the ther- 
mal gradients in the cable and includes transverse heat 
transfer among conductors in the winding pack. The 
solution of the coupled heat diffusion and helium flow 
has been successfully reduced to sets of simplified 
coupled 1-D problems equivalent to the original con- 
figuration. The formulation of the 1-D problem given 
here is appropriate for the analysis of a coil wound from 
cable-in-conduit conductors. A treatment similar to that 
proposed here could be used to extend the 1-D model to 
other situations, e.g. other conductor configurations, 
provided that the 1-D analogue is a good description of 
the original 3-D problem. 

The method proposed has been implemented into a 
code which is able to solve the full problem of the 
quench propagation in a 3-D configuration, also taking 
into account the operating current and magnetic field 
changes by means of integrated circuital and magneto- 
static solvers. We believe that at the moment this is the 
most versatile and comprehensive simulation model for 
force-flow cooled superconducting magnets. An exten- 
sive numerical and experimental validation program is 
under way to check that the assumptions and the solution 
algorithms have a sound physical basis. Part II of this 
paper gives examples of applications in relevant condi- 
tions. 
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